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a b s t r a c t

The majority of methods available to model survival data only deal with right censor-
ing. However, there are many applications where left, right and/or interval censoring
simultaneously occur. A methodology that is capable of handling all types of censoring
as well as flexibly estimating several types of covariate effects is presented. The baseline
hazard is modelled through monotonic P-splines. The model’s parameters are estimated
using an efficient and stable penalised likelihood algorithm. The proposed framework is
evaluated in simulation, and illustrated using an original data example on time to first
hospital infection or in-hospital death in cirrhotic patients. A peak of risk in the first
week since hospitalisation is identified, together with a non-linear effect of Model for
End-Stage Liver Disease (MELD) score. The GJRM R package, with an implementation of
our approach, is freely available on CRAN.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Survival data are encountered in many applications and since the pioneering work of Cox (1972) a great deal of
ttention has been devoted to developing survival models, and related estimation techniques, for right-censored event
imes. However, there are many situations where the data are simultaneously affected by different types of censoring
echanisms. For example, AIDS trials are often concerned with determining the incubation period of the HIV virus, defined
s the time elapsed from HIV infection to the onset of AIDS. Since the diagnosis of the disease is usually based on blood
esting, which can only be carried out on a periodic basis, it is impossible to know exactly what the incubation period is,
ence giving rise to interval-censoring (Odell et al., 1992). Other examples are carcinogenesis studies, such as the Prostate,
ung, Colorectal and Ovarian Cancer Screening Trial (Wang et al., 2016). For more examples of interval-censored data, in
arious fields, we refer the reader to Sun (2006) and Zhang and Sun (2010). The presence of interval-censored observations
oes not rule out other types of censoring. In fact, it is perfectly possible for some patients to have experienced the
vent of interest before the first screening or, alternatively, to reach the end of the trial without ever experiencing it,
hus generating left- and right-censored observations, respectively. In many cases, furthermore, it might be additionally
ossible to precisely measure the time to event for some subjects, therefore having additionally uncensored observations.
e refer to this situation as mixed censoring (Schick and Yu, 2000), also referred to as partly interval-censoring, which
aturally arises with composite endpoint definitions which are widespread, especially in the fields of cardiology, internal
edicine and oncology. For instance, event-free survival in cancer studies is defined as the time between primary
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treatment and the occurrence of any of a series of cancer-specific complications of events. These might include events
that can be measured precisely (e.g., death) and others that can only be guaranteed to have occurred in a time interval
between two screenings (e.g., leukopenia). A common approach in the presence of truly uncensored events is to treat the
interval censored ones as uncensored at the upper limit of the interval, that is, at the moment of diagnosis. This is well
acknowledged to be a possible source of bias (e.g., Odell et al., 1992; Fleming et al., 2009).

Our work is motivated by an original application to the evaluation of risk of in-hospital adverse events (death or new
nset of infection) in cirrhotic patients. Italy, and southern Europe in general, is a high risk country for multi-drug resistant
athogens, which occur much more commonly in the form of hospital infections than in community-acquired ones (Merli
t al., 2015; Bartoletti et al., 2018; Piano et al., 2019). Cirrhotic patients, due to compromised liver functionality or as a side
ffect of treatment, are additionally oftentimes immunodepressed and hence at higher risk of infections. Our data consist
f n = 678 cirrhotic patients who were admitted to Policlinico Umberto I hospital in Rome, Italy, between 2009 and 2017.

Of these, none was infected at admission, none was taking antibiotics, and none was scheduled for (nor had) major surgery
during the hospital stay. The endpoint is a composite one, where an event is defined as the occurrence of an infection or
death before hospital discharge. Times were recorded from admission. The main scientific questions with the data at hand
revolve around the possibility of an increased risk of infection or death due to the use of catheterism, paracentesis, and
overcrowding of the ward. We would like to model the effect of these binary predictors after non-parametrically adjusting
for the effect of MELD, a score summarising the progression of liver failure. Indeed, a clearly non-linear effect of MELD
will be discovered, indicating that a simple polynomial effect of this predictor would lead to misleading inference. Clearly,
these data provide uncensored time-to-event in case death (before infection) is observed, and right-censored data if no
event occurs before hospital discharge. Furthermore, in case an infection is observed, the event time is only known to
have occurred between the last and current assessments (usually within a time span of 12 to 48 hours), therefore having
also interval-censored event times.

At present, survival models with the simultaneous presence of different types of censoring can be easily handled
hrough accelerated failure time (parametric) models. Cox regression with mixed censoring is computationally cum-
ersome (Satten, 1996; Goggins et al., 1998), although an efficient implementation can be found in Anderson-Bergman
2017). There are works which proposed estimating flexible survival models under mixed censoring and in the following
e mention the perhaps most relevant to this paper. Recent articles include Liu et al. (2018) who proposed generalised
urvival models to estimate covariate effects flexibly while accounting for the monotonicity constraint on the survival
unction via a penalty term. Li and Ma (2019) employed a primal–dual interior point algorithm to estimate additive
azards models with parametric covariate effects and non-negative constraints on the hazards via M-splines. Szabo
t al. (2020) proposed a sieve maximum likelihood two-step estimation procedure based on polynomial splines for the
ccelerated hazards model. Wang et al. (2016) introduced an EM algorithm to estimate proportional hazards (PH) models
hat estimate covariate effects parametrically, and use monotone splines to approximate the cumulative baseline hazard
unction. The literature on survival modelling is vast and some interesting developments and R implementations are
discussed in Fauvernier et al. (2019) and Komarek et al. (2005), and many models incorporated in the survival package.
These, however, do not allow for either mixed censoring or flexible baseline and covariate effects via penalised regression
splines.

Building on Marra and Radice (2020a), we present in this work a flexible parametric methodology that is capable of
handling simultaneously all types of censoring, estimating covariate effects via additive predictors, and modelling the
baseline hazard by means of monotonic P-splines. The proposed link-based survival additive model yields the widely
used PH and proportional odds (PO) models as special cases. Importantly, the modelling framework avoids numerical
integration, which may lead to unstable and slow computations. The resulting additive model is very flexible. Modelling
the baseline hazard by means of monotonic P-splines is more efficient and parsimonious than using a non-parametric
hazard as in Cox models, and at the same time much more flexible than making strong parametric assumptions as in
Accelerated Failure Time (AFT) models. Parameter estimation is based on a penalised maximum likelihood approach
with automatic multiple smoothing parameter selection, which allows for stable and efficient computations. Note that
the closest approach to ours is that by Liu et al. (2017, 2018), however, as opposed to our proposal, these authors
impose monotonicity via a penalty term and, as they point out, their algorithm requires improvements when it comes
to multidimensional smoothing parameter estimation. In order to facilitate the use of the developments in this article
in industry and academia, as well as enhance reproducible research, our methods are available within the GJRM
package (Marra and Radice, 2020b) for the R (R Development Core Team, 2020) software.

The rest of the paper is organised as follows: Model formulation and parameter estimation are discussed in Sections 2
and 3 , with further details provided in Section 4. A simulation study is presented in Section 5, and the results obtained by
applying the proposed modelling framework to real data are discussed in Section 6. Section 7 concludes the paper with
some directions of future research.

2. Model formulation

The link-based additive survival models discussed below are essentially based on three ingredients: the survival
function, a link function and an additive predictor. Although the key intuition behind this construction is provided
by Younes and Lachin (1997), the model presented here is more flexible and is based on Marra and Radice (2020a). Let
2
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Table 1
Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density functions of a univariate standard normal distribution.
he first two functions are typically known as log–log and logit links, respectively. These are the same as those in Liu et al. (2018).
Model Link g(S) Inverse link g−1(η) = G(η) G′(η)

Prop. hazards (‘‘PH’’) log {− log(S)} exp {− exp(η)} −G(η) exp(η)
Prop. odds (‘‘PO’’) − log

( S
1−S

) exp(−η)
1+exp(−η) −G2(η) exp(−η)

probit (‘‘probit’’) −Φ−1(S) Φ(−η) −φ(−η)

Ti have a conditional survival function generically denoted by S(ti|xi; β) = P(Ti > ti|xi; β) ∈ (0, 1), where xi is a generic
vector of patient characteristics that has an associated coefficient vector β ∈ Rw with w given by the length of β. Then a
link-based additive survival model can be written as

g [S(ti|xi; β)] = ηi(ti, xi; f(β)), (1)

where g : (0, 1) → R is a monotone and twice continuously differentiable link function with bounded derivatives and
hence invertible, and ηi(ti, xi; f(β)) ∈ R is an additive predictor, defined in more detail in the next paragraph, which
includes a baseline function of time (or a stratified set of functions of time) to model the baseline hazard, and several
types of covariate effects. f(β) is a vector function of β whose main role is to impose a monotonicity constraint when
evaluating the baseline function of time contained in the additive predictor; this is discussed in detail in Section 3. A
simple rearrangement of (1) yields S(ti|xi; β) = G {ηi(ti, xi; f(β))}, where G is the inverse link function. The cumulative
hazard and hazard functions, H and h, are defined as H(ti|xi; β) = − log [G {ηi(ti, xi; f(β))}] and

h(ti|xi; β) = −
G′ {ηi(ti, xi; f(β))}
G {ηi(ti, xi; f(β))}

∂ηi(ti, xi; f(β))
∂ti

, (2)

where G′ {ηi(ti, xi; f(β))} = ∂G {ηi(ti, xi; f(β))} /∂ηi(ti, xi; f(β)). Table 1 displays the functions g , G and G′ implemented for
this work.

Let us now consider the construction of ηi where in this paragraph, for the sake of simplicity, the dependence on
covariates and parameters has been dropped. Since ti can be treated as a regressor, we define an overall covariate vector
zi made up of xi and ti. The main benefits of using an additive predictor are that various types of covariate effects can
be dealt with, and that such effects can be flexibly determined without making strong parametric a priori assumptions
about their functional forms. However, additivity here implies that not all the interaction terms among the covariates
may be included in ηi. There are many textbooks on the subject and we refer the reader to Wood (2017) for a thorough
discussion. An additive predictor can be defined as

ηi = β0 +

K∑
k=1

sk(zki), i = 1, . . . , n, (3)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the complete vector zi and the K functions sk(zki)
denote effects which are chosen according to the type of covariate(s) considered. Each sk(zki) can be represented as a
linear combination of Jk basis functions bkjk (zki) and coefficients fkjk (βkjk ), that is

Jk∑
jk=1

fkjk (βkjk )bkjk (zki). (4)

The above formulation implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)} T can be written as Zkfk(βk) with fk(βk) =

(fk1(βk1), . . . , fkJk (βkJk ))
T and design matrix Zk[i, jk] = bkjk (zki). This allows the predictor in (3) to be written as

η = β01n + Z1f1(β1) + · · · + ZK fK (βK ), (5)

where 1n is an n-dimensional vector made up of ones. Eq. (5) can also be written in a more compact way as η = Zf(β),
where Z = (1n, Z1, . . . , ZK ) and f(β) = (β0, f1(β1)T, . . . , fK (βK )T)T. Recall that f(β) serves to impose a monotonicity
constraint when evaluating the baseline smooth function of time. In fact, the fk vector functions will all be set to the
identity function except for the one related to the baseline which is specified in Section 3. Each βk has an associated
quadratic penalty λkβk

TDkβk, used in fitting, whose role is to enforce specific properties on the kth function, such as
smoothness. Note that each matrix Dk only depends on the choice of the basis functions. Smoothing parameter λk ∈ [0, ∞)
controls the trade-off between fit and smoothness, and plays a crucial role in determining the shape of ŝk(zki). The overall
penalty can be defined as βTSβ, where S = diag(0, λ1D1, . . . , λKDK ). Recall that smooth functions are typically subject
to centring (identifiability) constraints. Depending on the types of covariate effects one wishes to model (e.g., non-linear,
random, spatial), several definitions of basis functions and penalty terms are possible and we refer the reader to Wood
(2017) for all the options available. The spline definition and penalty employed for the baseline smooth function of time
are discussed in the second paragraph of Section 3.
3
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In Eq. (2), quantity ∂ηi(ti, xi; f(β))/∂ti is required. The results of the previous paragraph allow us to re-write
ηi(ti, xi; f(β)) as Zi(ti, xi)Tf(β), where Zi(ti, xi) denotes the ith row of the Z matrix (that is based on covariates and the time
variable, as pointed out earlier). The derivative of interest can then be obtained as lim

ε→0

{
Zi(ti+ε,xi)−Zi(ti−ε,xi)

2ε

}
Tf(β) = Zi

′Tf(β),
here, depending on the type of spline basis employed, Z′

i can be calculated either by a finite-difference method or
analytically.

Following, e.g., Royston and Parmar (2002), the link-based additive survival model can be written as

g {S(ti|xi)} = g {S0(ti)} +

K∑
k=2

sk(xki), (6)

where S0(ti) is a baseline survival function. If we replace g {S0(ti)} with s0(ti) then the RHS of (6) becomes notationally
consistent with (3), which also shows that s0(ti) is effectively modelling a transformation of the baseline survival function.
The use of s0(ti) as a predictor leads, as stated above, to a semi-parametric baseline hazard.

The choice for g determines the scale of the analysis (e.g., Liu et al., 2018). For instance, model (6) yields the
proportional hazards model when choosing the log–log link, i.e.

log {H(ti|xi)} = log {H0(ti)} +

K∑
k=2

sk(xki), (7)

where H(ti|xi) = − log {S(ti|xi)}, and H0(ti) = − log {S0(ti)} is the baseline cumulative hazard function. Important benefits
of modelling on the log-cumulative hazard scale are that the corresponding function is computationally more stable than
the log-hazard function, that quantities such as h(ti|xi) and S(ti|xi) can be directly obtained without the need for numerical
integration, and that time-dependent effects can be easily incorporated in the model using terms like sk(ti)xki. When the
RHS of (7) contains time-dependent effects, the model loses the proportional hazards interpretation. Model (6) yields the
proportional odds model when the logit link is chosen. Finally, note that time-varying covariates can be incorporated
as usual by representing data in time intervals. For example, a subject with three measurements for a covariate will
contribute with three time intervals, the first two of which will be associated with right-censoring.

Remark 1. For certain smooth functions, such as those modelling the effects of continuous covariates, quantity Jk in
(4) has to be set to some value to make the computation feasible. This implies the well known fact that the unknown
sk(zki) may not have an exact representation as given in (4). In practice, Jk is set to a typically large arbitrary value that
allows for ‘‘enough’’ flexibility in estimating the smooth term. This is not problematic since the coefficients of the spline
basis are penalised in the estimation process such that the smooth term’s complexity that is not supported by the data
is suppressed (e.g., Wood, 2017).

Remark 2. For left- and right-censored observations (call them li and ri), as well as exact observations, the additive
predictor is uniquely defined since there is only one relevant time-to-event datum ti for each individual. Specifically,
ti = li for left-censored observations, ti = ri for right-censored observations and ti = li = ri for exact observations,
where li and ri are realisations of the respective random variables Li and Ri. However, in the case of interval-censoring,
the model formulation is slightly more involved due to the need to account for the information contained in both the
lower and upper bounds of the censoring interval. This means that interval-censored observations require the set-up of
two distinct design matrices, hence additive predictors, based on li and ri. Ultimately, all the baseline covariates are the
same and only one vector of parameters β will be estimated, but the predictor itself is a function of time and, as such,
will take on different values depending on whether it is evaluated at li or ri. If the ith observation is interval-censored
then we need to define ηi(li, xi; f(β)) and ηi(ri, xi; f(β)) which can be expressed as Z1i(li, xi)Tf(β) and Z2i(ri, xi)Tf(β), where
1i(li, xi) and Z2i(ri, xi) are identical except for the time variables.

. Parameter estimation

For each individual i, let Ti denote the true event time. Due to censoring, Ti may not be recorded exactly, in which case
he random variable is only known to lie within the interval (Li, Ri), where Li and Ri are left and right censoring times. If
i = 0 then the observation is defined as ‘‘left-censored’’, if Ri = ∞ then the observation is classified as ‘‘right-censored’’,
nd if Li and Ri take on finite distinct non-zero values then the observation is classified as ‘‘interval-censored’’. Exact
bservations correspond to the case Li = Ri. The censoring type for the ith observation is represented by the indicator
unctions δLi, δRi, δIi and δUi.

Let us assume that a random i.i.d. sample {(li, ri, δUi, δLi, δRi, δIi, xi)}ni=1 is available, where n represents the sample
ize, that there are no competing risks and that censoring is independent and non-informative conditional on xi. The
og-likelihood function can be written as

ℓ(β) =

n∑
i=1

δUi log
[
−

∂G {ηi(li)}
∂ηi(li)

∂ηi(li)
∂ li

]
+ δLi log [1 − S {ηi(li)}]

(8)
+ δRi log [S {ηi(ri)}] + δIi log [S {ηi(li)} − S {ηi(ri)}] .
4
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Note that, in the case of exact observations, li and ri are interchangeable. The proposed model allows for a high degree of
lexibility, which is why penalised estimation of β is advisable. In order to prevent over-fitting we maximise the penalised
log-likelihood

ℓp(β) = ℓ(β) −
1
2
βTSβ. (9)

To ensure that the estimated survival function is monotonically decreasing or equivalently that the hazard function is
positive (achieved if ∂ηi(li)/∂ li is positive), we model the time effects using the monotonic P-spline approach, which is
explained using a simplified notation for the sake of simplicity. Let s(ti) =

∑J
j=1 fj(βj)bj(ti), where the bj are B-spline basis

unctions of at least second order built over the interval [a, b], based on equally spaced knots, and the fj(βj) are spline
oefficients. A sufficient condition for s′(ti) ≥ 0 over [a, b] is that fj(βj) ≥ fj(βj−1) ∀j (e.g., Leitenstorfer and Tutz, 2007).
uch condition can be imposed by defining f(β) = Σ

{
β1, exp(β2), . . . , exp(βJ )

}
T, where Σ [ι1, ι2] = 0 if ι1 < ι2 and

Σ [ι1, ι2] = 1 if ι1 ≥ ι2, with ι1 and ι2 denoting the row and column entries of Σ . (Note that, in practice, Σ is absorbed
into the design matrix containing the B-spline basis functions.) When setting up the penalty term we penalise the squared
differences between adjacent βj, starting from β2, using D = D∗TD∗ where D∗ is a (J − 2) × J matrix made up of zeros
except that D∗

[ι, ι + 1] = −D∗
[ι, ι + 2] = 1 for ι = 1, . . . , J − 2 (Pya and Wood, 2015).

Following Marra and Radice (2020a), estimation of β and λ is achieved using a two-stage algorithm whose main
ingredients are the analytical score vector and Hessian matrix (see Appendix A). Given the structure of (8), deriving
such quantities has been somewhat tedious, especially because of the non-linear dependence of f(β) on β which gave
rise to terms like ∂2ηi(ti, xi; f(β))/∂ti∂β = zi′TE and ∂ηi(ti, xi; f(β))/∂β = ziTE, where E is a vector such that E[kjk] = 1
f fkjk (βkjk ) = βkjk and exp(βkjk ) otherwise. However, the computational benefits of avoiding approximations justified the
ffort. The algorithm can be summarised as follows:

• Trust region step: holding λ fixed at a vector of values and for a given β[a], where a is an iteration index, maximise
Eq. (9) using

β[a+1]
= β[a]

+ argmin
e:∥e∥≤∆[a]

ℓ̆p(β[a]), (10)

where ℓ̆p(β[a]) = −
{
ℓp(β[a]) + eTgp(β[a]) +

1
2e

THp(β[a])e
}
, gp(β[a]) = g(β[a])−Sβ[a] and Hp(β[a]) = H(β[a])−S. Vector

g(β[a]) is given by ∂ℓ(β)/∂β|β=β[a] , matrix H(β[a]) by ∂2ℓ(β)/∂β∂βT
|β=β[a] , ∥ · ∥ denotes the Euclidean norm, and ∆[a]

is the radius of the trust region which is adjusted through the iterations. Eq. (10) uses a quadratic approximation
of −ℓp about β[a] (the so-called model function) in order to choose the best e[a+1] within the ball centred in β[a]

of radius ∆[a], the trust-region. Throughout the iterations, a proposed solution is accepted or rejected and the trust
region adjusted (i.e., expanded or shrunken) based on the ratio between the improvement in the objective function
when going from β[a] to β[a+1] and that predicted by the approximation. Note that, near the solution, the trust region
method typically behaves as a classic Newton–Raphson unconstrained algorithm. For more details see (e.g., Nocedal
and Wright, 2006, Chapter 4).

• Smoothing step: holding the model’s parameter vector value fixed at β[a+1], solve problem

λ[a+1]
= argmin

λ

∥M[a+1]
− A[a+1]M[a+1]

∥
2
− n + 2tr(A[a+1]), (11)

where, dropping the iteration index for simplicity, M = µM + ϵ, µM =
√

−Hβ, ϵ =
√

−H−1g and A =√
−H (−H + S)−1 √

−H . It can be proved that (11) is approximately equivalent to the Akaike information criterion
(AIC). This means that λ is estimated by minimising what is effectively the AIC with number of parameters given by
tr(A). The above step is implemented adapting to the current context the routine by Wood (2004), which is based on
Newton’s method and can evaluate in an efficient and stable way the components in (11) and their first and second
derivatives with respect to log(λ) (since the smoothing parameters can only take positive values).

The two steps are iterated until the algorithm satisfies the criterion

⏐⏐⏐ℓ(β[a+1])−ℓ(β[a])
⏐⏐⏐

0.1+
⏐⏐⏐ℓ(β[a+1])

⏐⏐⏐ < 1e−07, and convergence is assessed

y checking that the maximum of the absolute value of the score vector is numerically equivalent to 0 and that the
bserved Information matrix is positive definite. Reliable starting values are obtained by combining the use of the stable
nd efficient shape constrained smoothing approach of Pya and Wood (2015), implemented through the scam R package,
ith the procedure detailed in Section 2.3.1 of Liu et al. (2018).
We would like to point out that preliminary experimentation using, for instance, classical quasi-Newton and Newton

ethods revealed that estimation performance and convergence are not often satisfactory. As an example, we found that
he Hessian is poorly approximated by numerical differentiation techniques, which was not surprising given the model
et up. Trust region algorithms are generally more stable and faster compared to in-line search methods. The latter use
he quadratic model of the objective function to find a search direction and suitable step lengths along such direction,
hereas the former search the step that minimises the objective function within a previously defined region around the
urrent iterate. If a function exhibits long plateaus and the current iterate is in that region, line search methods may
5
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search the next step far away from the current iterate in which case it may be possible that the evaluation of the log
likelihood will not be finite. Instead, trust region methods define a maximum distance based on the trust region before
evaluating the objective function. This is convenient because the new iterate will not lie too far away from the current
one, and in the case of a non-definite evaluation, the proposed step will not be accepted. If a candidate which minimises
the quadratic model and that also lies in the trust region does not improve the function sufficiently or gives a non-definite
evaluation, the trust region will shrink and the algorithm will move back to the previous step. If the improvement is large
enough, the trust region will expand in the next iteration.

As mentioned earlier, the non-linear dependence of f(β) on β makes the estimation problem more challenging which
ould in turn lead to numerical instabilities. Another potential issue is that the smoothing step neglects the dependence
f the Hessian on the smoothing parameter vector; this will vanish asymptotically, but at finite sample sizes it may be
on-negligible. A smoothing approach addressing the latter issue has been proposed by Wood et al. (2016), however it
equires computing the third and fourth order derivatives. We found the estimation framework detailed in this section
o work well in our simulation and case studies. Adaptations of the same framework have also been successfully utilised
n different survival contexts (e.g., Dettoni et al., 2020; Marra and Radice, 2020a).

. Further details

The number of effective degrees of freedom (edf ) for a model containing only unpenalised terms is equal to w, the
imension of β, since in this case tr(A) = tr(I). The edf for a penalised model is tr(A) which can also be written as
− tr

{
(−H + S)−1 S

}
. The latter shows the role of λ contained in S; if λ → 0 then tr(A) → w and if λ → ∞ then

r(A) → w − ζ , where ζ is the total number of model’s parameters subject to penalisation. When 0 < λ < ∞, the
odel’s edf is equal to a value in the range [w − ζ , w]. The edf of a single smooth or penalised term is given by the sum
f the corresponding trace elements and has a value smaller than or equal to Jk.
As for the construction of intervals, it is convenient to take a Bayesian view of the model and employ at convergence

the result β
·

∼ N (β̂,Vβ), where Vβ = −Hp(β̂)−1 (Wood et al., 2016). Intervals constructed using this approach exhibit
close-to-nominal frequentist coverage probabilities since they account for both sampling variability and smoothing bias,
an aspect that is particularly relevant at finite sample sizes. Since the evaluation of the additive predictor (as defined,
for instance, by (5)) and the quantities that rely on it (e.g., (2)) depends on f(β), it makes sense to obtain the relevant
istribution, which, following Pya and Wood (2015), is f(β)

·

∼ N (f(β̂),Vf(β)), where Vf(β) = diag (E)Vβdiag (E). This is
orked out by using a Taylor series expansion of f(β), i.e. f(β) − f(β̂) ≈ diag (E)

(
β − β̂

)
, which shows that f(β) − f(β̂)

s approximately a linear function of β. Recalling that linear functions of normally distributed random variables follow
ormal distributions, the result follows. P-values for the smooth components in the model are derived by adapting the
esults discussed in Wood (2017) and using Vf(β) as covariance matrix.

Intervals for linear functions of the model’s coefficients (such as smooth components) are obtained using the above
esult for f(β). Intervals for non-linear functions of the model’s coefficients can instead be conveniently obtained by
osterior simulation, hence avoiding computationally expensive parametric bootstrap or frequentist approximations. As
n example, if we are interested in obtaining intervals for (2) then we need to obtain a number of simulated vectors for
(β) and for each of them evaluate (2). These evaluations are then used to construct intervals.

. Simulation study

This section provides evidence on the empirical effectiveness of the proposed methodology in recovering true covariate
ffects and baseline functions, in the presence of all types of censoring and of linear and non-linear effects. The data
enerating process (DGP) described below has been designed to mimic some of the features of the results of the case study
iscussed in the next section. For instance, the chosen baseline function, values for β1 and β2, and shape and magnitude
f one of the two smooth functions are in line with the empirical findings. In the DGP, however, we included an extra
mooth function to make the estimation problem more challenging. We have not considered potential competitors in
ur study because, to the best of our knowledge, there are no alternative implementations capable of handling mixed
ensoring, of flexibly estimating the (linear or non-linear) shapes of the baseline function and covariate effects, and that
re based on a fast and stable automatic multiple smoothing parameter selection approach.
The exact survival time Ti was generated from a proportional hazard model defined, on the survival function scale, as

og [− log S0(ti)]+β1z1i +β2z2i + s1(z3i)+ s2(z4i), where S0(ti) = 0.7 exp(−0.03t1.8i )+0.3 exp(−0.3t2.5i ), β1 = 1.3, β2 = 0.5,
s1(x) = −0.075 exp(3.2x) and s2(x) = sin(2πx). A very similar definition of S0(ti) has previously been adopted by Liu et al.
(2018) on the basis of biological plausibility of the underlying distribution. Correlated covariates were generated using a
multivariate standard Gaussian with correlation parameters set at 0.5 and then transformed using the distribution function
of a standard Gaussian (e.g., Marra and Radice, 2020a). Covariates z1i and z2i were dichotomised by simply rounding them.
Observations were generated using the Brent’s univariate root-finding method. The values of Li and Ri were determined
through a visit process. Let U denote the uniform distribution. Two visits were simulated such that V1 ∼ U[0, 2] and
V2 = V1 + U[0, 6]. Then observations for which Ti < V1 were left-censored (with Li = 0 and Ri = V1), observations
for which T > V were right-censored (with L = V and R = ∞), and observations for which V < T < V were
i 2 i 2 i 1 i 2

6
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Fig. 1. Smooth function and linear coefficient estimates obtained by applying gamlss() in GJRM to survival simulated data in the presence of all
ypes of censoring. True functions are represented by black solid lines, mean estimates by dashed lines and point-wise ranges resulting from 5% and
5% quantiles by shaded areas. In the lower left plot, circles indicate mean estimates while grey bars represent the estimates’ ranges resulting from
% and 95% quantiles. True values are indicated by dashed horizontal lines. The first three (top) plots refer to the survival, hazard and cumulative
azard functions.

nterval-censored (with Li = V1 and Ri = V2). Uncensored observations were generated by randomly assigning (with
probability equal to 0.2) to left and interval censored observations the respective observed survival times. The sample
size was set to 700 (in line with the size of the data-set used in the case study) and the number of replicates to 1000. To
assess the effect that several proportions of censoring types have on the estimation results, we tried different simulation
settings; the performance of the estimation method was very similar to that discussed in this section.

The models were fitted using function gamlss() in GJRM described in Appendix B. The smooth components of the
ontinuous covariates were represented using the default penalised low rank thin plate splines with second order penalty
nd 10 bases (Wood, 2017). Note that we could have employed different spline definitions and related penalties (e.g., cubic
egression splines and P-splines which are available in the package). As explained in Wood (2017), for uni-dimensional
mooths of continuous covariates, the specific choice of spline definition will not have an impact on the estimated curve(s)
s long as a reliable smoothing method is available for model fitting. As for the number of basis functions, the chosen
alue of 10 is arbitrary and based on the fact that it generally offers enough modelling flexibility in applications. However,
sensitivity analysis using more bases was attempted; there was no virtual change in the results but, as expected, the
omputing time increased. Regarding the smooth function of the time variable, we employed the monotonic penalised
-spline approach detailed in Section 3. For each replicate, curve estimates were constructed using 200 equally spaced
ixed values in the (0, 6) range for the monotonic function and (0, 1) otherwise.

Fig. 1 summarises the results. Considering the small sample size and complexity of the model, the true functions and
inear effects are overall recovered well by the proposed estimation method. As the sample size increases (results not
hown here) the estimates improve and their variability decreases. Computing time for fitting the model was on average
seconds.
We also considered an alternative definition for s2, namely s2(x) = 0.2x11(10(1 − x))6 + 10(10x)3(1 − x)10. As far as

the baseline smooth function of time, s1 and the parametric components are concerned, we virtually obtained the same
results as those shown in Fig. 1. As for s2, the result is reported in Fig. 4, in Appendix C, which shows that overall the true
function is recovered well by the estimation method.
7
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Table 2
Cirrhotic patients data. Left panel: Estimated coefficient, standard error and p-value for the each regressor
included in the base model (that includes a smoothed baseline risk and smoothed MELD). Right panel:
Estimated coefficients, standard errors and p-values for linear effects included in the final multivariate
model.
Var Coef SE p-value Coef SE p-value

Age 0.002 0.008 0.771
Gender −0.202 0.226 0.372
Paracentesis 0.578 0.206 0.005 0.415 0.209 0.047
Extra bed 1.408 0.229 <0.001 1.288 0.229 <0.001
Catheter 0.701 0.209 0.001 0.439 0.214 0.040
History 0.114 0.244 0.640
Alcohol −0.167 0.204 0.413

6. Hospital-related risk assessment in cirrhotic patients

Our data example is about risk of in-hospital infection or death for cirrhotic patients who do not exhibit a clear
isk of undergoing major surgery, or admitted for that reason. A retrospective study was conducted at the Policlinico
mberto I hospital in Rome, reviewing data about patients admitted between January 2009 and March 2017. A total
f n = 678 patients satisfy our inclusion criteria of (i) having a diagnosis of cirrhosis prior to hospitalisation, (ii) not

having an infection or taking antibiotics at admission, (iii) not being hospitalised for major surgery (including, clearly,
liver transplantation).

The endpoint of interest is composite; an event is defined as the occurrence of an infection or death before hospital
discharge. We have 573 patients who were safely admitted, treated and discharged, therefore giving rise to right censored
times. We also have 96 interval censored times for patients that have developed an infection during the hospital stay
(whose precise onset is clearly impossible to measure), and 9 in-hospital deaths which give rise to uncensored events.

Follow-up times (before event or hospital discharge) range between 1 and 89 days, with a median of 7 days. Patients
are on average 60.8 ± 11.8 years old, 76% are males, 84 are staying in an extra bed, 138 recovered from an infection
within the month prior to admission, and 361 have a history of alcohol abuse. The extra bed patients are those who are
admitted without the availability of a bed in the ward, and hence hospitalised in the emergency room, or in a temporary
bed set up in the corridors of the ward. During the hospital stay (for most patients within 48 hours of admission) 206
patients received a paracentesis procedure, 133 catheterisation of some sort, and 61 both procedures. Paracentesis is a
procedure in which a needle is inserted into the peritoneal cavity to obtain ascitic fluid for diagnostic or therapeutic
purposes, while catheterisation (usually at the level of the hepatic vein for these patients) involves the insertion of a
catheter into a blood vessel. Both are routine procedures, whose associated risks in this patients’ population should be
carefully assessed. Finally, the patient status is summarised through the MELD score, ranging from 1 to 40 in our data,
with a mean of 13.34 and a standard deviation of 5.21. MELD evaluates the severity of chronic liver disease and is also
used to prioritise waiting lists for transplantation (where usually a MELD larger than fifteen points is an indication for
entry into the waiting list).

Given that a risk associated with MELD is well established in the literature, we estimate a model with two additive
predictors for baseline assessment: s(MELD) and s(ti). For the smooth function of time we also consider the option s(log(ti)).
his typically helps producing a smoother fitted function which in turn reduces the chance of potential artefacts in
he estimated hazard function, which may be especially relevant at low sample sizes (e.g., Royston and Parmar, 2002).
mportantly, for outcomes characterised by marked changes in the values close to zero, employing the log transformation
ill considerably help modelling such patterns. Generally, we found that the log transform is preferred in empirical
pplications. The chosen link function is PH. The log-transformation is preferred with a BIC of 1034.2 versus a BIC of
059.9 for the identity transformation (using the AIC led to the same conclusion). The results of the chosen model are
ummarised in the upper panel of Fig. 2, which clearly shows a non-linear effect of MELD (this will commented in more
etail below). The number of basis functions for the smooth components was set to the default value of 10; increasing
his value did not change the results. Overall, we have p-values smaller than 5% for both additive terms.

We then build models with three predictors: the two additive components (one for MELD, one for time) from the base
odel, and each of the additional variables considered in the study. The estimated coefficient, standard error and p-value

or each extra regressor in the model are reported in the left panel of Table 2.
Finally, we select a multivariate model in a forward stepwise fashion. The final model includes additive components

or the baseline risk and MELD, and linear effects of the indicator variables for paracentesis, overcrowding (extra bed)
nd catheterisation. (The same model is actually obtained through a different backward or stepwise selection algorithm.)
esults are reported in the right panel of Table 2. In the lower panel of Fig. 2, we report the estimated effects for the
aseline hazard and MELD. The baseline hazard is slightly non-linear even on a log scale, increasing steeply at the
eginning of follow-up but with a small but noticeable levelling up at around exp(2) ∼= 7 days. This holds both when
onditioning only on MELD (upper panel) and when additionally adjusting for important linear effects (lower panel). We
an, therefore, conclude that the risk of events increases sharply during the hospital stay (as expected) but that the first
8
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Fig. 2. Cirrhotic patients data. Baseline risk and smoothed effect of MELD when used as the only predictors (upper panel), and in a multivariate
odel with additional linear effects for overcrowding, catheterisation, and paracentesis (lower panel). The 95% point-wise intervals are obtained
s described in Section 4. The rug plot, at the bottom of each graph, shows the variables’ values. The number in brackets in the y-axis caption
epresents the edf of the respective smooth curve.

eek seems to be the most critical. The effect of MELD is also non-linear, but much smoother when the model adjusts
or overcrowding and risky procedures. The sample size is comparatively high given our inclusion criteria, but still too
mall to draw strong conclusions. Nevertheless, it can be seen that for a MELD of up to around 15/20 points there is
o risk differential, while after a certain threshold a sharp increase in risk is observed. This supports the use of MELD
hresholds for inclusion in waiting lists for liver transplantation, where 15 is clearly a good choice given that MELD will
ikely increase while in the waiting list. Finally, after non-parametrically adjusting for the baseline risk and patient status
summarised by MELD), the variables overcrowding, paracentesis and catheterisation are found to be risk factors for the
ew onset of infections or death. The rationale for paracentesis and catheterisation is clear and might be also connected
o a not perfect implementation of the procedure, while the high effect on risk of overcrowding is most likely linked to
ncreased contacts among patients, and between patients and visitors.

To further illustrate the capabilities of our method, Fig. 3 shows the estimated hazard for a patient having undergone
atheterisation, with a MELD equal to fifteen at admission. As expected, the risk peaks within the first few days, it then
lattens out, and subsequently slowly increases. Similar predictions can be carried out for different profiles.

Finally, we compare the goodness of fit of our proposed model with that obtained using alternative and more classical
pproaches. Specifically, we considered parametric AFT models based on both the Weibull and log-Normal assumptions
nd that can handle mixed censoring, a (biased) Cox regression model that treats interval censored data as uncensored at
, and a similar biased Cox–GAM which includes a non-parameteric additive effect of MELD. We also considered using
i

9
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Fig. 3. Cirrhotic patients data. Estimated hazard for a patient that underwent catheterisation, with a MELD equal to fifteen at admission. The 95%
intervals have been obtained via posterior simulation using the approach described in Section 4.

Table 3
Cirrhotic patients data. BIC values obtained using the fi-
nal multivariate specification when employing different
modelling approaches: AFT (based on Weibull and log-
Normal), a biased Cox regression, a biased Cox–GAM, and
the proposed approach based on PO, probit and PH links.
Model BIC

AFT-Weibull 1340.25
AFT-log-Normal 1336.01
Biased Cox 1091.04
Biased Cox–GAM 1099.31
PO 1013.05
Probit 1012.03
PH 995.74

different link function specifications for our proposed model. A further alternative is a (formally correct) Cox regression
model in which interval censored data are treated as right censored at Li. These are anyway not feasible with our data due
o the presence of only nine deaths (uncensored events). Even after using a Firth’s penalised likelihood, results are not
redible for this specification. Table 3 reports the BIC for each approach, and our proposal with PH specification is clearly
referred. As a further consideration, treating the baseline risk semi-parametrically seems to be particularly important.

. Concluding remarks

In many survival studies, mixed censoring (a situation where uncensored and left, right and interval censored obser-
ations mix together) may arise. There is, therefore, a strong need for theoretically founded, flexible and computationally
fficient statistical methods for fitting survival models for this type of data. In this paper, we contributed in this direction
y introducing link-based survival additive models under mixed censoring that can be fitted using a stable and efficient
stimation approach. A clearly added value is the availability of analytic score and Hessian functions, to estimate the
odel’s coefficients and smoothing parameters, which make our implementation very convenient from a computational
oint of view. The inferential procedure is implemented in the accompanying GJRM R package.
The proposed approach performed well in simulation and has also been applied to an original data example on time

o first hospital infection or in-hospital death in cirrhotic patients, showing that in real data scenarios ignoring the mixed
ature of censoring or smooth non-linear effects might lead to lack of fit and bias. Code and data can be found at
ttps://github.com/afarcome/GJRM.
Future research will focus on extending the modelling framework to the cases of: left truncation, excess hazard,

ultivariate response variables, complex survival outcomes including competing risks, multiple-events per subjects, and
ltimately multi-state models. Joint modelling of survival and longitudinal outcomes should be a possible useful extension
f our method. It would also be interesting to compare the performance of the proposed method versus the approach
10
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of Fauvernier et al. (2019) in the presence of time-dependent effects. In a similar vein as Liu et al. (2018), we also plan on
extending the plotting function of the GJRM R package to include more conditional post-estimators based, for instance,
on contrasts and various types of standardisations.
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Appendix A. Score and Hessian

This section contains the analytical expressions of the score and Hessian of the model’s log-likelihood. Recall that the
structure of Eq. (8) implies the presence of four main components, that is

ℓ(β) =

n∑
i=1

δUiℓUi + δLiℓLi + δRiℓRi + δIiℓIi .

Exploiting this fact, the gradient and Hessian are reported according to the type of censoring considered to ease their
readability. To simplify the notation, we use S ′

N {ηi(ti)} = ∂SN {ηi(ti)} /∂ηi(ti), S ′′

N {ηi(ti)} = ∂2SN {ηi(ti)} /∂ηi(ti)2 and
′′′

N {ηi(ti)} = ∂3SN {ηi(ti)} /∂ηi(ti)3, where ti is adopted whenever the equality holds both for ri as for li. To simplify the
notation further, we also present the results for a single ith observation.

Score

• Uncensored:

∂

∂β
ℓUi (β) = δUi

[
S ′

N {ηi(li)}
∂ηi(li)

∂ li

]−1 [
S ′′

N {ηi(li)}
∂ηi(li)
∂β

∂ηi(li)
∂ li

+ S ′

N {ηi(li)}
∂2ηi(li)
∂β∂ li

]
.

• Left censoring:

∂

∂β
ℓLi (β) = −δLi [1 − SN {ηi(li)}]−1 S ′

N {ηi(li)}
∂ηi(li)
∂β

.

• Right censoring:

∂

∂β
ℓRi (β) = δRi [SN {ηi(li)}]−1 S ′

N {ηi(li)}
∂ηi(li)
∂β

.

• Interval censoring:

∂

∂β
ℓIi (β) = δIi [SN {ηi(li)} − SN {ηi(ri)}]−1

[
S ′

N {ηi(li)}
∂ηi(li)
∂β

− S ′

N {ηi(ri)}
∂ηi(ri)

∂β

]
.

essian

• Uncensored:

∂2

∂β∂βT ℓ(β)Ui =

δUi

[
−S ′

N {ηi(li)}
]−2

[
S ′′

N {ηi(li)}2
∂ηi(li)
∂β

{
∂ηi(li)
∂β

}T

− S ′

N {ηi(li)} S ′′′

N {ηi(li)}
∂ηi(li)
∂β

{
∂ηi(li)
∂β

}T
]

+ δUi

[
S ′

N {ηi(li)}
]−1 S ′′

N {ηi(li)}
∂2ηi(li)
∂β∂βT

+ δUi

[
−

∂ηi(li)
∂ li

]−2
∂2ηi(li)
∂β∂ li

{
∂2ηi(li)
∂β∂ li

}T

+ δUi

[
∂ηi(li)

∂ li

]−1
∂3ηi(li)
∂β2∂ li

.

11
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• Left censoring:

∂2

∂β∂βT ℓ(β)Li = −δLi [1 − SN {ηi(li)}]−2 [
S ′

N {ηi(li)}
]2 ∂ηi(li)

∂β

{
∂ηi(li)
∂β

}T

− δLi [1 − SN {ηi(li)}]−1 S ′′

N {ηi(li)}
∂ηi(li)
∂β

{
∂ηi(li)
∂β

}T

+ δLi [1 − SN {ηi(li)}]−1 S ′

N {ηi(li)}
{

∂2ηi(li)
∂β∂βT

}T

.

• Right censoring:

∂2

∂β∂βT ℓ(β)Ri = −δRi [SN {ηi(li)}]−2 [
S ′

N {ηi(li)}
]2 ∂ηi(li)

∂β

{
∂ηi(li)
∂β

}T

+ δRi [SN {ηi(li)}]−1 S ′′

N {ηi(li)}
∂ηi(li)
∂β

{
∂ηi(li)
∂β

}T

+ δRi [SN {ηi(li)}]−1 S ′

N {ηi(li)}
{

∂2ηi(li)
∂β∂βT

}T

.

• Interval censoring:

∂2

∂β∂βT ℓ(β)Ii = −δIi [SN {ηi(li)} − SN {ηi(ri)}]−2

·

[[
S ′

N {ηi(li)}
]2 ∂ηi(li)

∂β

{
∂ηi(li)
∂β

}T

+
[
S ′

N {ηi(ri)}
]2 ∂ηi(ri)

∂β

{
∂ηi(ri)

∂β

}T

− S ′

N {ηi(li)} S ′

N {ηi(ri)}

[
∂ηi(li)
∂β

{
∂ηi(ri)

∂β

}T

+
∂ηi(ri)

∂β

{
∂ηi(li)
∂β

}T
]]

+ δIi [SN {ηi(li)} − SN {ηi(ri)}]−1

·

[
S ′′

N {ηi(li)}
∂ηi(li)
∂β

{
∂ηi(li)
∂β

}T

+ S ′

N {ηi(li)}
{

∂2ηi(li)
∂β∂βT

}T

− S ′′

N {ηi(ri)}
∂ηi(ri)

∂β

{
∂ηi(ri)

∂β

}T

− S ′

N {ηi(ri)}
{

∂2ηi(ri)
∂β∂βT

}T]
.

ppendix B. The R GJRM package

Link-based additive survival models with mixed censoring can be fitted using function gamlss() in the GJRM R
ackage (Marra and Radice, 2020b). The gamlss() function is generally very easy to use, especially if the user is already
amiliar with the syntax of generalised linear and additive models in R. An example of call is

q <- list(t ~ s(log(t), bs = "mpi") + z1 + s(z2))

ut <- gamlss(eq, data = dataset, surv = TRUE, margin = "PH", cens = cens, type.cens = "mixed", upperB = "t2")

here t is a survival variable with censoring mixed indicator cens (made up of four possible categories: I which stands
or interval, L for left, R for right, and U for uncensored), and z1 and z2 are (e.g., binary and continuous) covariates.
ariable t2 is only used when interval censored observations are present in the dataset; in this case the intervals’
pper bound values are required and the variable name of the upper bound has to be provided via argument upperB.
rgument surv must be set to TRUE in order to employ a survival model. Argument margin of gamlss() in GJRM allows
he user to employ the desired link function and the possible choices are given in Table 1; for example, margin = "PH"
eturns a proportional hazards model. Given the modularity of our implementation, other link function specifications,
uch as those belonging to the Aranda-Ordaz family as described by Royston and Parmar (2002), can be considered. eq
ontains the equation of interest. Symbol s() stands for smooth function. As in mgcv, the default spline basis is bs = "tp"
penalised low rank thin plate spline) with k = 10 (number of basis functions) and m = 2 (order of derivatives). However,
rgument bs can also be set to, for example, cr (penalised cubic regression spline), ps (P-spline) and mrf (Markov random
ield), to name but a few. It is important to note that bs must be set to mpi (monotonic P-spline) for the baseline smooth
f time. Model summary() and plot() functions work in a similar fashion as those of generalised linear and additive
odels, and AIC() and BIC() can be used in the usual manner. Function hazsurv.plot() allows the user to produce,
ost-estimation, hazard and survival plots. More details and options can be found in the documentation of the GJRM R
ackage.
12
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Fig. 4. Results from the experiment that uses an alternative definition for s2 . The true function is represented by the black solid line, the mean
estimate by the dashed line and point-wise ranges resulting from 5% and 95% quantiles by the shaded area.

Appendix C. Further simulation results

See Fig. 4.
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