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Abstract
We specify a general formulation for multivariate latent Markov models for panel
data, where outcomes are possibly of mixed-type (categorical, discrete, continuous).
Conditionally on a time-varying discrete latent variable and covariates, the joint distri-
bution of outcomes simultaneously observed is expressed through a parametric copula.
We therefore do not make any conditional independence assumption. The observed
likelihood ismaximizedbymeans of an expectation–maximization algorithm. In a sim-
ulation study, we argue how modeling the residual contemporary dependence might
be crucial in order to avoid bias in the parameter estimates. We illustrate through an
original application to assessment of poverty through direct and indirect indicators in
a cohort of Italian households.

Keywords Frank copula · Mixed responses · Panel data

Mathematics Subject Classification 62H99 · 62J12 · 62P20

1 Introduction

Latent Markov (LM) models for panel data provide a flexible framework to analyze
univariate andmultivariate responses (Zucchini andMacDonald 2009; Bartolucci et al.
2013, 2014). They can be seen as (multivariate) mixed models, based on a latent dis-
crete random variable that captures the dynamic unobserved heterogeneity and is
assumed to follow a first-order Markov chain with k ∈ N latent masses. Response
variables are modeled with assumptions of local independence, i.e., each outcome is
independent of its history and the history of other outcomes conditionally on covari-
ates and the latent process. While many works deal with multivariate outcomes, a
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conditional independence assumption is additionally often used, i.e., each outcome
is independent of the other outcomes at the same time point for the same unit, con-
ditionally on covariates and the latent process (e.g., Bartolucci and Farcomeni 2015;
DeRuiter et al. 2017; Dotto et al. 2018; Anderson et al. 2019a; Russo et al. 2022).
This assumption can very often be found to be restrictive: In our experience, tests for
conditional independence are regularly rejected. Models using this assumption can
therefore easily lead to biased results. In our application we will investigate three ways
of measuring poverty (based on income, work intensity, andmaterial deprivation). The
latent variable can be argued to summarize poverty levels. Conditional independence
would imply for instance that poverty completely explains the relationship between
income below a poverty threshold and work intensity, which is not tenable since one
can expect complex phenomena to be in place for some households (e.g., undeclared
work, inherited assets, etc.).

The conditional independence assumption can be relaxed using a multivariate nor-
mal formulation when all outcomes are Gaussian (e.g., Anderson et al. 2019; Punzo
et al. 2021). Alternatives are explored for instance in Punzo et al. (2021), and Merlo
et al. (2022) use amultivariate asymmetric Laplace to jointly model multivariate quan-
tiles. For categorical outcomes, Bartolucci and Farcomeni (2009) formulate a class
of LM models where the joint distribution is marginally parameterized through log-
its, log-odds-ratios, and higher-order loglinear interactions (which are anyway often
assumed to be null). Orfanogiannaki and Karlis (2018) model multivariate count data
using multivariate formulations of the Poisson distribution that also have Poisson
marginals.

To the best of our knowledge in the LM framework, there are no available alter-
natives to the conditional independence assumption when modeling multivariate
outcomes that can be a mix of count, binary, categorical, discrete, and continuous
variables. In this paper, we develop such an extension. Specifically, the dependency
structure is captured by a copula formulation. This allows us to flexibly specify a
generalized linear model (Farcomeni 2015) for each of the outcomes and express the
joint distribution as a function of the marginal cumulative density functions (CDF)s
through a parametric copula, whose parameter captures the residual contemporary
dependence among outcomes. Copula-based formulations for latent Markov mod-
els have been previously considered in Hardle et al. (2015), Martino et al. (2020),
Orfanogiannaki and Karlis (2018), Otting and Karlis (2023), Otting et al. (2023). Our
contribution with respect to previous works mainly resides in the fact that we allow for
a mix of measurement levels in the response variables (which was mentioned in some
works but never explicited), we include the effects of covariates, and do not restrict
our formulation to two or three dimensions.

We illustrate using an original real data application on a panel of Italian households,
where our outcome is three-dimensional (a binary indicator of equivalised disposable
income below a poverty line, a count of items materially lacking, and a measure of
work intensity). Themain aim is to shed light into the surprising but commonmismatch
among these indicators.We show that part of themismatch is clearly due to unobserved
heterogeneity, that is, there actually exist a non-negligible share of households that
might be poor only according to one or two indicators.We also show that conditionally
on the latent variable, the dependence among contemporary outcomes clearly exists,
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but it is not strong, indicating possible problems in the very definition of the indicators
themselves.

The rest of the paper is as follows: In the next section, we give some background
on copulas. Our class of copula-based latent Markov models is defined in Sect. 3, and
inference described in Sect. 4. A simulation study is reported in Sect. 5. In Sect. 6, we
describe more in detail our real data application and show results of the data analysis.
Some concluding remarks are given in Sect. 7.

R functions with an implementation of our approach are available at https://github.
com/aruxxo/LMcopula.

2 Background on copula modeling

We start by giving some background on copula functions. The main advantage of cop-
ulas for our purposes arises from the possibility of obtaining proper joint distributions
by separating the specification of the margins from the modeling of the dependency
structure. For a detailed review, see for instance Joe (2014), and Nikoloulopoulos
(2013) for the case of discrete outcomes. A nice review of copula models for a mix of
discrete and continuous outcomes is given in Wu et al. (2013).

A d-dimensional copula, C : [0, 1]d → [0, 1], is a joint cumulative distribution
function. We will specify parametric copulas C(m | ξ) = C(m1, . . . ,md | ξ), where
an association parameter ξ captures association among marginals m.

Consider a random vector Y = (Y1, . . . ,Yd) with continuous and increasing mar-
gins FYj (Y j | ψ j ) for some parameter ψ j , j = 1, . . . , d. We assume

C(m1, . . . ,md | ξ) = P
[
FY1(Y1 | ψ1) ≤ m1, . . . , FYd (Yd | ψd) ≤ md

]

= FY
[
F−1
Y1

(m1 | ψ1), . . . , F
−1
Yd

(md | ψd)
] (1)

and therefore

F(y1, . . . , yd) = C [
F1(y1 | ψ1), . . . , Fd(yd | ψd) | ξ

]
(2)

for all yi ∈ [−∞,+∞], i = 1, . . . , d. The density takes the usual form

c(m1, . . . ,md | ξ) = ∂dC(m1, . . . ,md | ξ)

∂m1, . . . ,md

d∏

r=1

fYr (yr | ψr ) (3)

where mi = FYi (yi | ψ i )
d= U (0, 1), ∀ i = 1, . . . , d.

There are several possible choices. Gaussian copulas, and Student’s T counterparts,
work well when modeling multivariate data with symmetric dependency patterns.
Archimedean copulas are also very popular, being both flexible and convenient due to
the existence of a closed form expression. Special cases that will be considered in this
work are Frank, Clayton, Joe, and Gumbel copulas. Joe and Gumbel models capture
asymmetric dependency structures, exhibiting stronger forms of positive dependence.
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Table 1 Families of Archimedean copula models for the d-variate case and the support of the relative
association parameter ξ

Family C(m1, . . . ,md | ξ) Support of ξ

Frank −ξ−1 log
{
1 + [

exp(−ξm1) − 1
] · . . . · [

exp(−ξmd ) − 1
]
/
[
exp(−ξ) − 1

]d−1
}

R/{0}

Clayton
[
m−ξ
1 + . . . + m−ξ

d − (d − 1)
]−1/ξ [−1,∞)/{0}

Joe 1 −
{
1 − [1 − (1 − m1)

ξ ] · . . . · [1 − (1 − md )ξ ]
}1/ξ

(1,∞)

Gumbel exp

{
−

[
(− logm1)

ξ + (− logm2)
ξ + . . . + (− logmd )ξ

]1/ξ }
(1,∞)

The Clayton copula is also asymmetric, and better captures negative association. The
Frank copula is, finally, comprehensive. Functional forms and domains for the param-
eter ξ of the copula models that will be used in this work are reported in Table 1; a
comprehensive guide can be found in Nelsen (2006).

The brief introduction we have given has been restricted to the classical case of
continuous margins. Cases in which one, some, or even all margins are not continuous
require somemore care. Some additional challenges arise also from the computational
perspective. First of all, whenever all marginals are discrete, the copula might lack
uniqueness, and some of the properties derived for the continuous case may not hold.
Discrete randomvariables violate in general the assumption thatmargins are uniformly
distributed. The discussion inGenest andNevslehová (2007) clarifies that copulamod-
els are still valid for discrete outcomes, since Eq. (2) is still a correct representation
of the joint distribution function. Moreover, inference is still possible with fully para-
metric likelihood-based methods; see, for example, Henn (2022). Nikoloulopoulos
(2013) provides not only a review of parametric copulas with discrete margins, but
also an extensive discussion on properties. Trivedi and Zimmer (2017) show that the
identification/uniqueness issue attenuates when the model has a regression structure
and responses are count data. They note though that asymmetric copulas (e.g., Clayton
and Gumbel) might require large data sets to mitigate the issue of uniqueness.

In the following, we will give a specification of a copula regression model that is
valid under any general combination of continuous and discrete margins and discuss
the details where appropriate.

3 Themodel

Let Yitr denote the r th endpoint of interest, measured for the i th subject at time t ; with
r = 1, . . . , d, t = 1, . . . , Ti , and i = 1, . . . , n. We also assume there exists a discrete
unidimensional latent variable Uit with support in {1, . . . , k}, where k is known. The
latent variable is assumed to evolve over time according to a homogeneous first-order
Markov chain, with initial probabilities Pr(Ui1 = u) = πu , collected in a vector π ,
and transition probabilities Pr(Uit = v|Ui,t−1 = u) = πuv , collected in a transition
matrix �.
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For the marginal distributions, conditionally on Uit , we assume that Yitr follows a
natural exponential family

p(Yitr |Uit = u, η, λr ) = exp {(Yitrηutr − q(ηutr ))/(a(λr ) − b(Yitr , λr ))} , (4)

where p(·) can either be a probability density function (PDF) or probabilitymass func-
tion (PMF); and functions a(·), b(·), and q(·) are known. The parameter of interest is
ηutr , while λr is a nuisance parameter. The current specification relies on homogene-
ity assumptions on the nuisance parameters λr , that is, that the nuisance parameters
do not vary with the latent variable. This provides usually sufficiently good fit, but
it can easily be relaxed, at the price of an increase in the number of free parameters.
For instance, for conditional Gaussian outcomes, it might happen that latent states
associated with large means are also associated with a larger variance, in which case
one should assume a state-specific variance σ 2

u .
A regression model will usually be specified after reparameterization through a

known link function h(·), as

h(ηutr ) = αru + β ′
rXi tr , (5)

where Xi tr is a vector of time-subject-outcome specific covariates. In (5), only the
intercept depends onUit , as customary with latent Markov models. Also this assump-
tion can be easily relaxed.

Usually, a conditional independence assumption is put forward so that Yitr is inde-
pendent of Yits for all s �= r , conditionally on Uit . We relax this assumption through
a copula model. Specifically, we assume that Yi t , conditionally on Uit = u, has joint
CDF

C(mi t1u, . . . ,mi tdu | ξ) (6)

with mi tru = FYr (Yitr | Uit = u, η, λr ). Details on the joint PMF/PDF are given in
Sect. 4. Local independence and part of the conditional independence assumption still
holds as we assume Yi t to be independent of Yis , for s < t , conditionally on Uit .
Clearly, Yitr is also assumed to be independent of Y jsh for i �= j as usual.

4 Inference

In this section, we show how to estimate the parameters of the model proposed in the
previous section.

4.1 Observed likelihood

We first present the functional form of the joint PMF/PDF. Without loss of generality
we assume that among the d margins, the first d1 correspond to continuous variables,
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and the remaining are discrete. Define

C̃(mi tu | ξ) = ∂d1

∂mit1u, . . . ,mitd1u
C(mit1u, . . . ,mitdu | ξ) (7)

which is based on partial derivatives only with respect to the first d1 margins. The
joint density function is obtained by taking the first differences of (7) with respect to
the remaining d − d1 margins:

c̃(Yi t | ξ,Uit = u) =
d1∏

r=1

fr (yitr | Uit = u)

×
1∑

jd1+1=0

· · ·
1∑

jd=0

(−1) jd1+1+···+ jd C̃
( {

mit1u, . . . ,mitd1u
}
,

×
{
m

jd1+1

i td1+1u, . . . ,m
jd
itdu

}
| ξ

)

(8)

where for the discrete outcomes s = d1 + 1, . . . , d m1
i tsu = FYs (Yits | ψ s,Uit = u),

and m0
i tsu = FYs (Y

−
i ts | ψ s,Uit = u) is the left-hand limit at Yits . See also Zilko and

Kurowicka (2016) on (8).
The observed likelihood cannot be computed directly, as it would involve a tele-

scopic sum over all possible configurations of the latent variable. A simple forward
recursion can anyway be used. The computational complexity is linear in

∑
i Ti , and

the recursion allows to exactly evaluate the observed likelihood. Define ait (u) =
f (Yi1, . . . ,Yit ,Uit = u). Let, by definition,

ai1(u) = πu c̃(Yi1 | ξ,Uit = u).

It is possible to show with some algebra that if Ti > 1, for t = 2, . . . , Ti ,

ait (u) = c̃(Yi t | ξ,Uit = u)

k∑

h=1

ai,t−1( j)πhu .

The recursion shall be repeated for each i = 1, . . . , n. By definition of ait (u), the
observed log-likelihood at the parameter θ (which is a short hand notation for the
vector of free parameters involved in the model) is then

	(θ) =
n∑

i=1

log

(
k∑

u=1

aiTi (u)

)

.

A backward recursion is also implemented, as it is required within the E-step of the
EMalgorithmdescribed below.Define sit (u) = f (Yi,t+1, . . . ,Yi,Ti |Uit = u). Clearly,
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siTi (u) = 1. The recursion then proceeds for t = Ti − 1, . . . , 1 by setting

sit (u) =
k∑

v=1

πuv si,t+1(v) c̃(Yi t | ξ,Uit = u).

4.2 Expectation–maximization algorithm

For the maximization of 	(θ), an EM algorithm can be then implemented. In order
to limit the possibility of converging to local optima, a multi-start strategy is recom-
mended.

The forward and backward recursions are repeated before each expectation step,
using the current parameter values. In order to derive the EM algorithm, we introduce
the log-likelihood of the complete data

	∗(θ) =
n∑

i=1

k∑

u=1

wi1u log(πu) +
n∑

i=1

Ti∑

t=2

k∑

u=1

k∑

v=1

zituv log(πuv)

+
n∑

i=1

Ti∑

t=1

k∑

u=1

wi tu log
[
c̃(Yi t | ξ,Uit = u)

]

where wi tu = 1 if subject i is in state u at time t , and it is zero otherwise; while
zituv = 1 if subject i at time t moves to state v from state u, and it is zero otherwise.

The EM algorithm iterates an expectation and a maximization step, until conver-
gence. The E-step amounts to computing the conditional expectation of 	∗(θ) given
the data and the current value of the parameters. This is actually equivalent to plug-in
of the conditional expected value of the variables wi tu and zituv , which are available
in closed form as:

E [wi tu | Y ] = ait (u)sit (u)
∑k

u=1 aiTi (u)

E [zituv | Y ] = πuv

ait (u)si,t+1(v)
∑k

u=1 ait (u)sit (u)
× c̃(Yi,t+1 | ξ,Uit = v).

At the M-step, the parameters are updated by maximization of the expected value
of 	∗(θ) calculated in the previous step. Closed form expressions are available for the
parameters of the latent distribution:

π̂u =
∑n

i=1 E [wi1u | Y ]
∑n

i=1
∑k

h=1 E [wi1h | Y ]

π̂uv =
∑n

i=1
∑Ti−1

t=1 E [zituv | Y ]
∑n

i=1
∑Ti−1

t=1

∑k
v=1 E [zituv | Y ]
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For the regression parameters α and β of themarginal regressionmodels, we imple-
ment d separate optimization steps, each involving one Newton–Raphson iteration.
The objective function corresponds to

n∑

i=1

Ti∑

t=1

k∑

u=1

E [wi tu | Y ] log {c̃(Yi t | ξ,Uit = u)} . (9)

Following Anderson et al. (2019), we tackle label switching by reordering param-
eters at the end of each M-step so that α11 ≤ · · · ≤ α1k . The first dimension of α

is chosen for reference without loss of generality. The copula parameter ξ is finally
updated by optimizing (9) through a univariate numerical optimization procedure.

5 Simulations

The modeling approach and inference have been so far introduced in complete gen-
erality. In order to assess the performance of the proposed approach, we conduct
an extensive simulation study, where we consider scenarios involving either mixed
margins, and fully discrete margins as in the empirical application.

We generate panels of dimensions n = {800, 1200}, Ti = {4, 6}, where outcomes
are three-dimensional responses whose dependency structure is captured by a Frank
copula with association parameter ξ = {0, 2}.

For the case of mixed margins, we simulate from a Latent Markov model with
k = 2 latent components. The first dimension Yit1 is a Gaussian response variable
with identity link function. A second outcome Yit2 is a binary outcome distributed as a
Bernoulli, for which we specify a logistic regression model. The last dimension Yit3 is
a count variable with Poisson distribution and log link function. For each dimension,
we generate two zero-centered Gaussian covariates and have two sets of β parameters,
to obtain a total of sixteen simulation settings involving mixed margins. Full details
are given in the accompanying Web “Appendix.”

We consider also the case of fully discrete response variables in order to mim-
ick the model that will be specified for the real data analysis. In these settings, two
dimensions Yit1 and Yit2 are, respectively, a binary outcome and a Poisson-distributed
count variable. A third dimension Yit3 is an ordered categorical variable taking values
{0, 1, 2, 3, 4}, with global logit parameterization of the form:

log

(
Pr(Yit3 ≥ z|Uit = u)

Pr(Yit3 < z|Uit = u)

)
= α3uz + β3Xit3,

for z = 0, 1, 2, 3. The latter can be simply inverted to obtain the conditional distribu-
tion of Yit3. We let the number of latent states vary as k = {2, 3}, and the remaining
details can be found in the accompanying Web Appendix.

For each scenario, we generate data, estimate a LMmodel based on a copula formu-
lation as proposed, and a classical LM model under the full conditional independence
assumption. We repeat the operation B = 250 times and evaluate model performance
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through computation of the average mean squared error (MSE) for each group of
parameters.

Tabel 2 reports results for the settings involving mixed responses. For the cases
concerning fully discrete margins, we report in Table 3 results corresponding to a
latent Markov model with k = 2 latent states, while Table 4 summarizes settings in
which k = 3.We denote with LMC the results for a model using a copula formulation,
and LMI the results corresponding to a full conditional independence assumption.

It is clear that whenever the classical LMI model is well-specified (that is, data are
generated with ξ = 0), there is little loss of information in the use of an additional
parameter for the LMCmodel. On the other hand, when the true association parameter
is as low as ξ = 2, corresponding to τ = 0.21 in a continuous-marginals model, the
LMI approach clearly is sub-optimal and brings about a bias in estimation of both
manifest and latent parameters.

Additionally, we study simulation scenarios in which we test the performance of
the Bayesian Information Criterion (BIC) in recovering the correct copula structure.
We generate data through a Frank copula with ξ = 2, with three mixed outcomes
(Gaussian, Bernoulli, Poisson) as described above. We then estimate our model with
four different assumptions on the copula structure (Frank, Clayton, Gumbel, and Joe)
and select by minimizing BIC. It can be seen from Table 5 that BIC consistently leads
to select the data generating Frank copula. We finally note that the computational cost
associated with a single replicate varies with the complexity of the data generating
process, the sample size, and especially the number of latent states; average time was
around two hours on a 3.49 GHz Apple M2 Pro with 32 GB RAM. Our R code is not
optimized and does not make use of C or Fortran code.

6 An analysis of multidimensional aspects of poverty in Europe

In this section,we describe ourmotivating example.We explore amultivariatemeasure
of poverty in themanifestmodel,mostly to disentangle unobserved heterogeneity from
measurement error. Use of copula models in this area of research is not new, see, e.g.,
Hohberg et al. (2021).

We here measure poverty through the following two indicators: income levels, and
material deprivation. The first is the most natural and frequently used measure, but it
can be argued that it is an indirect one.Material deprivation indicators aim at obtaining
a direct measurement of poverty by assessing living conditions. A detailed motivation
and definition can be found in Townsend (1987). It is generally recommended to
measure both income and deprivation to identify the poor (Townsend and Gordon
1991); but a well-known issue in the literature is the surprisingly common occurrence
of mismatch (e.g., Whelan et al. 2004, and references therein and thereof).

In this work, we give some insights into the nature of this mismatch and report about
a further surprising mismatch: the one between work intensity and poverty. It will be
seen indeed that non-negligible fractions of households at very low work intensity are
not poor and vice versa.

We have data from the most recent (2014–2017, Ti = T = 4) panel component of
the European Union Survey on Income and Living Conditions (EU SILC). We adopt

123



A. Russo, A. Farcomeni

Ta
bl
e
2

Si
m
ul
at
io
n
re
su
lts

fo
r
da
ta
ge
ne
ra
te
d
fr
om

a
L
at
en
tM

ar
ko
v
m
od
el
w
ith

k
=

2
la
te
nt

m
as
se
s
an
d
as
so
ci
at
ed

m
ix
ed

(G
au
ss
ia
n
an
d
di
sc
re
te
)
re
sp
on
se

va
ri
ab
le
s
ha
vi
ng

jo
in
td

is
tr
ib
ut
io
n
m
od
el
ed

vi
a
a
Fr
an
k
co
pu
la
w
ith

pa
ra
m
et
er

ξ
.

M
SE

α̂
β̂

σ̂
ξ̂

π̂
�̂

n
T

β
ξ

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

80
0

4
(1

,
1)

2
0.
04

5
0.
23

3
0.
27

1
0.
31

1
0.
01

3
0.
21

3
0.
11

1
2.
00

0
0.
01

9
0.
02

0
0.
01

2
0.
01

4

80
0

4
(−

1,
0)

2
0.
04

7
0.
23

1
0.
27

4
0.
32

4
0.
01

4
0.
21

3
0.
11

8
2.
00

0
0.
01

9
0.
02

0
0.
01

2
0.
01

4

12
00

4
(1

,
1)

2
0.
03

9
0.
22

8
0.
24

1
0.
25

5
0.
01

2
0.
21

3
0.
08

9
2.
00

0
0.
01

5
0.
01

4
0.
01

0
0.
01

1

12
00

4
(−

1,
0)

2
0.
03

8
0.
23

0
0.
25

4
0.
26

2
0.
01

2
0.
21

5
0.
09

0
2.
00

0
0.
01

5
0.
01

5
0.
01

0
0.
01

1

80
0

6
(1

,
1)

2
0.
03

6
0.
22

7
0.
24

7
0.
25

9
0.
01

1
0.
21

4
0.
07

5
2.
00

0
0.
01

8
0.
01

8
0.
00

9
0.
01

1

80
0

6
(−

1,
0)

2
0.
03

7
0.
22

8
0.
24

0
0.
26

3
0.
01

1
0.
21

4
0.
08

0
2.
00

0
0.
01

7
0.
01

8
0.
00

9
0.
01

0

12
00

6
(1

,
1)

2
0.
03

0
0.
22

9
0.
19

8
0.
20

2
0.
01

0
0.
21

5
0.
06

9
2.
00

0
0.
01

6
0.
01

6
0.
00

8
0.
00

9

12
00

6
(−

1,
0)

2
0.
03

0
0.
23

0
0.
18

9
0.
19

2
0.
00

9
0.
21

5
0.
07

5
2.
00

0
0.
01

6
0.
01

7
0.
00

8
0.
00

9

80
0

4
(1

,
1)

0
0.
04

7
0.
23

1
0.
29

5
0.
30

7
0.
01

2
0.
21

9
0.
01

9
0.
00

0
0.
09

5
0.
01

9
0.
01

1
0.
01

1

80
0

4
(−

1,
0)

0
0.
04

6
0.
23

1
0.
29

8
0.
30

2
0.
01

2
0.
21

8
0.
03

4
0.
00

0
0.
01

9
0.
01

8
0.
01

2
0.
01

2

12
00

4
(1

,
1)

0
0.
03

6
0.
22

8
0.
25

3
0.
25

4
0.
00

9
0.
21

9
0.
00

1
0.
00

0
0.
01

5
0.
01

5
0.
01

0
0.
01

0

12
00

4
(−

1,
0)

0
0.
04

0
0.
22

8
0.
26

0
0.
25

3
0.
01

0
0.
21

9
0.
01

1
0.
00

0
0.
01

5
0.
01

5
0.
01

0
0.
01

0

80
0

6
(1

,
1)

0
0.
03

8
0.
22

9
0.
25

5
0.
25

5
0.
01

1
0.
21

9
0.
00

1
0.
00

0
0.
01

7
0.
01

7
0.
00

8
0.
00

8

80
0

6
(−

1 ,
0)

0
0.
03

9
0.
23

0
0.
24

5
0.
24

2
0.
01

0
0.
21

9
0.
00

1
0.
00

0
0.
01

7
0.
01

7
0.
00

9
0.
00

9

12
00

6
(1

,
1)

0
0.
03

0
0.
22

8
0.
19

6
0.
18

9
0.
00

8
0.
21

7
0.
01

1
0.
00

0
0.
01

6
0.
01

6
0.
00

8
0.
00

8

12
00

6
(−

1,
0)

0
0.
03

0
0.
22

9
0.
19

1
0.
18

5
0.
00

9
0.
21

7
0.
01

6
0.
00

0
0.
01

6
0.
01

6
0.
00

8
0.
00

8

W
e
re
po

rt
M
SE

fo
r
ea
ch

gr
ou

p
of

pa
ra
m
et
er
s.
L
M
C
re
fe
rs
to

ou
r
pr
op

os
ed

fr
am

ew
or
k,

L
M
I
to

an
L
M

m
od

el
as
su
m
in
g
fu
ll
co
nd

iti
on

al
in
de
pe
nd

en
ce
.R

es
ul
ts
ar
e
ba
se
d
on

B
=

25
0
re
pl
ic
at
es

123



A copula formulation for multivariate...

Ta
bl
e
3

Si
m
ul
at
io
n
re
su
lts

fo
r
da
ta
ge
ne
ra
te
d
fr
om

a
L
at
en
tM

ar
ko
v
m
od
el
w
ith

k
=

2
la
te
nt

m
as
se
s
an
d
as
so
ci
at
ed

re
sp
on
se

va
ri
ab
le
s
ha
vi
ng

jo
in
td

is
tr
ib
ut
io
n
m
od
el
ed

vi
a

a
Fr
an
k
co
pu

la
w
ith

pa
ra
m
et
er

ξ

M
SE

α̂
β̂

ξ̂
π̂

�̂

n
T

β
ξ

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

80
0

4
(1

,
1)

2
0.
09

1
0.
10

3
0.
31

5
0.
33

7
0.
16

1
2.
00

0
0.
02

2
0.
02

4
0.
01

6
0.
05

4

80
0

4
(−

1,
0)

2
0.
09

1
0.
10

6
0.
30

9
0.
32

1
0.
16

5
2.
00

0
0.
02

4
0.
02

6
0.
01

5
0.
05

6

12
00

4
(1

,
1)

2
0.
07

0
0.
08

9
0.
26

8
0.
29

8
0.
12

3
2.
00

0
0.
01

7
0.
01

7
0.
01

3
0.
05

4

12
00

4
(−

1,
0)

2
0.
05

5
0.
06

9
0.
19

7
0.
22

4
0.
08

3
2.
00

0
0.
01

8
0.
02

0
0.
01

0
0.
05

0

80
0

6
(1

,
1)

2
0.
06

8
0.
08

2
0.
25

9
0.
29

5
0.
12

3
2.
00

0
0.
02

0
0.
02

1
0.
01

2
0.
05

0

80
0

6
(−

1,
0)

2
0.
06

7
0.
08

5
0.
25

6
0.
29

5
0.
11

4
2.
00

0
0.
01

8
0.
02

1
0.
01

1
0.
05

0

12
00

6
(1

,
1)

2
0.
05

2
0.
06

9
0.
20

1
0.
22

7
0.
08

1
2.
00

0
0.
01

9
0.
02

2
0.
01

0
0.
05

0

12
00

6
(−

1,
0)

2
0.
05

5
0.
06

9
0.
19

7
0.
22

4
0.
08

3
2.
00

0
0.
01

8
0.
02

0
0.
01

0
0.
05

0

80
0

4
(1

,
1)

0
0.
07

5
0.
07

5
0.
32

9
0.
32

8
0.
00

1
0.
00

0
0.
02

0
0.
02

0
0.
01

4
0.
01

4

80
0

4
(−

1,
0)

0
0.
07

5
0.
07

5
0.
32

4
0.
33

3
0.
00

1
0.
00

0
0.
02

0
0.
02

0
0.
01

3
0.
01

4

12
00

4
(1

,
1)

0
0.
06

1
0.
06

1
0.
29

5
0.
29

3
0.
00

1
0.
00

0
0.
01

7
0.
01

7
0.
01

1
0.
01

1

12
00

4
(−

1,
0)

0
0.
06

2
0.
06

1
0.
27

2
0.
27

6
0.
00

0
0.
00

0
0.
01

7
0.
01

7
0.
01

1
0.
01

1

80
0

6
(1

,
1)

0
0.
06

2
0.
06

2
0.
27

6
0.
27

5
0.
01

0
0.
00

0
0.
01

9
0.
01

9
0.
01

0
0.
01

0

80
0

6
(−

1 ,
0)

0
0.
06

3
0.
06

4
0.
27

5
0.
27

9
0.
01

0
0.
00

0
0.
01

9
0.
01

9
0.
01

0
0.
01

0

12
00

6
(1

,
1)

0
0.
04

9
0.
05

0
0.
21

3
0.
21

6
0.
00

1
0.
00

0
0.
01

9
0.
01

9
0.
00

8
0.
00

8

12
00

6
(−

1,
0)

0
0.
06

2
0.
06

1
0.
27

2
0.
27

6
0.
00

0
0.
00

0
0.
01

7
0.
01

7
0.
01

1
0.
01

1

W
e
re
po

rt
M
SE

fo
r
ea
ch

gr
ou

p
of

pa
ra
m
et
er
s.
L
M
C
re
fe
rs
to

ou
r
pr
op

os
ed

fr
am

ew
or
k,

L
M
I
to

an
L
M

m
od

el
as
su
m
in
g
fu
ll
co
nd

iti
on

al
in
de
pe
nd

en
ce
.R

es
ul
ts
ar
e
ba
se
d
on

B
=

25
0
re
pl
ic
at
es

123



A. Russo, A. Farcomeni

Ta
bl
e
4

Si
m
ul
at
io
n
re
su
lts

fo
r
da
ta
ge
ne
ra
te
d
fr
om

a
L
at
en
tM

ar
ko
v
m
od
el
w
ith

k
=

3
la
te
nt

m
as
se
s
an
d
as
so
ci
at
ed

re
sp
on
se

va
ri
ab
le
s
ha
vi
ng

jo
in
td

is
tr
ib
ut
io
n
m
od
el
ed

vi
a

a
Fr
an
k
co
pu

la
w
ith

pa
ra
m
et
er

ξ

M
SE

α̂
β̂

ξ̂
π̂

�̂

n
T

β
ξ

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

L
M
C

L
M
I

80
0

4
(1

,
1)

2
0.
12

8
0.
15

2
0.
31

1
0.
38

9
0.
17

4
2.
00

0
0.
04

6
0.
03

1
0.
03

4
0.
12

9

80
0

4
(−

1,
0)

2
0.
12

2
0.
14

8
0.
31

6
0.
36

7
0.
16

1
2.
00

0
0.
04

1
0.
03

2
0.
03

4
0.
12

9

12
00

4
(1

,
1)

2
0.
10

7
0.
14

2
0.
25

4
0.
30

3
0.
12

6
2.
00

0
0.
03

6
0.
03

0
0.
03

0
0.
13

3

12
00

4
(−

1,
0)

2
0.
10

7
0.
14

0
0.
25

1
0.
30

4
0.
14

0
2.
00

0
0.
03

6
0.
03

0
0.
02

9
0.
13

3

80
0

6
(1

,
1)

2
0.
09

4
0.
12

7
0.
25

1
0.
32

2
0.
12

6
2.
00

0
0.
03

7
0.
03

3
0.
02

5
0.
12

5

80
0

6
(−

1,
0)

2
0.
09

5
0.
12

9
0.
26

0
0.
32

3
0.
12

4
2.
00

0
0.
03

7
0.
03

3
0.
02

6
0.
12

5

12
00

6
(1

,
1)

2
0.
07

7
0.
11

0
0.
22

0
0.
26

3
0.
10

1
2.
00

0
0.
02

5
0.
02

6
0.
01

8
0.
12

6

12
00

6
(−

1,
0)

2
0.
07

9
0.
11

1
0.
21

7
0.
25

3
0.
09

9
2.
00

0
0.
02

8
0.
02

7
0.
01

8
0.
12

6

80
0

4
(1

,
1)

0
0.
10

1
0.
10

2
0.
35

2
0.
35

3
0.
01

6
0.
00

0
0.
03

1
0.
03

0
0.
02

6
0.
02

5

80
0

4
(−

1,
0)

0
0.
10

2
0.
10

2
0.
35

8
0.
36

0
0.
01

7
0.
00

0
0.
02

9
0.
02

9
0.
02

7
0.
02

4

12
00

4
(1

,
1)

0
0.
08

5
0.
08

5
0.
27

2
0.
27

0
0.
03

1
0.
00

0
0.
02

6
0.
02

5
0.
02

3
0.
02

1

12
00

4
(−

1,
0)

0
0.
08

4
0.
08

4
0.
26

7
0.
27

2
0.
02

6
0.
00

0
0.
02

7
0.
02

6
0.
02

2
0.
02

1

80
0

6
(1

,
1)

0
0.
08

0
0.
08

1
0.
28

3
0.
28

4
0.
01

2
0.
00

0
0.
02

7
0.
02

6
0.
01

9
0.
01

8

80
0

6
(−

1 ,
0)

0
0.
08

3
0.
08

3
0.
27

6
0.
27

4
0.
00

5
0.
00

0
0.
02

5
0.
02

6
0.
01

8
0.
01

8

12
00

6
(1

,
1)

0
0.
06

6
0.
06

6
0.
22

3
0.
22

6
0.
02

0
0.
00

0
0.
02

1
0.
02

1
0.
01

4
0.
01

4

12
00

6
(−

1,
0)

0
0.
06

6
0.
06

6
0.
21

9
0.
22

1
0.
00

2
0.
00

0
0.
02

1
0.
02

2
0.
01

4
0.
01

4

W
e
re
po

rt
M
SE

fo
r
ea
ch

gr
ou

p
of

pa
ra
m
et
er
s.
L
M
C
re
fe
rs
to

ou
r
pr
op

os
ed

fr
am

ew
or
k,

L
M
I
to

an
L
M

m
od

el
as
su
m
in
g
fu
ll
co
nd

iti
on

al
in
de
pe
nd

en
ce
.R

es
ul
ts
ar
e
ba
se
d
on

B
=

25
0
re
pl
ic
at
es

123



A copula formulation for multivariate...

Ta
bl
e
5

Si
m
ul
at
io
n
re
su
lts

fo
r
da
ta
ge
ne
ra
te
d
fr
om

L
at
en
tM

ar
ko
v
m
od
el
s
w
ith

k
=

{2,
3}

la
te
nt

m
as
se
s,
th
re
e
re
sp
on
se

va
ri
ab
le
s
(G

au
ss
ia
n,

B
er
no
ul
li,

Po
is
so
n)
,a
nd

Fr
an
k

co
pu
la
w
ith

pa
ra
m
et
er

ξ
=

2

n
T

β
k

̂
P
(C

∗ =
C x

)
M
ed
ia
n(
B
IC

)

C F
ra
nk

C C
la
yt
on

C G
um

be
l

C J
oe

C F
ra
nk

C C
la
yt
on

C G
um

be
l

C Jo
e

80
0

4
(1

,
1)

2
1.
00

0.
00

0.
00

0.
00

23
,7
22

.9
6

23
,8
17

.1
1

23
,7
94

.8
9

23
,8
80

.4
3

80
0

4
(−

1,
0)

2
1.
00

0.
00

0.
00

0.
00

23
,7
20

.2
0

23
,8
20

.5
5

23
,8
01

.7
9

23
,8
92

.5
0

12
00

4
(1

,
1)

2
1.
00

0.
00

0.
00

0.
00

35
,4
52

.7
8

35
,6
03

.8
5

35
,5
79

.9
1

35
,7
23

.1
9

12
00

4
(−

1,
0)

2
1.
00

0.
00

0.
00

0.
00

35
,4
38

.3
2

35
,5
94

.8
7

35
,5
63

.4
9

35
,7
17

.8
1

80
0

6
(1

,
1)

2
1.
00

0.
00

0.
00

0.
00

35
,5
77

.5
6

35
,7
34

.6
3

35
,7
03

.3
1

35
,8
44

.5
1

80
0

6
(−

1,
0)

2
1.
00

0.
00

0.
00

0.
00

35
,5
79

.6
6

35
,7
43

.6
0

35
,6
98

.3
9

35
,8
37

.8
9

12
00

6
(1

,
1)

2
1.
00

0.
00

0.
00

0.
00

53
,0
94

.9
7

53
,3
26

.8
2

53
,2
69

.4
9

53
,4
83

.5
0

12
00

6
(−

1,
0)

2
1.
00

0.
00

0.
00

0.
00

53
,0
83

.7
8

53
,3
30

.0
6

53
,2
63

.3
3

53
,4
88

.7
2

80
0

4
(1

,
1)

3
1.
00

0.
00

0.
00

0.
00

23
,5
37

.1
2

23
,5
90

.4
7

23
,5
82

.6
4

23
,6
34

.3
0

80
0

4
(−

1,
0)

3
1.
00

0.
00

0.
00

0.
00

23
,5
46

.9
9

23
,5
97

.2
7

23
,5
97

.0
1

23
,6
48

.2
6

12
00

4
(1

,
1)

3
1.
00

0.
00

0.
00

0.
00

35
28

1.
72

35
,3
64

.2
2

35
,3
49

.3
8

35
,4
32

.0
9

12
00

4
(−

1,
0)

3
1.
00

0.
00

0.
00

0.
00

35
,2
70

.0
0

35
,3
56

.0
2

35
,3
34

.2
9

35
,4
12

.8
8

80
0

6
(1

,
1)

3
1.
00

0.
00

0.
00

0.
00

35
,1
92

.2
6

35
,2
86

.7
3

35
,2
69

.1
2

35
,3
57

.8
8

80
0

6
(−

1 ,
0)

3
1.
00

0.
00

0.
00

0.
00

35
,1
77

.7
9

35
,2
75

.2
1

35
,2
55

.6
3

35
,3
45

.8
5

12
00

6
(1

,
1)

3
1.
00

0.
00

0.
00

0.
00

52
,7
19

.4
2

52
,8
60

.0
2

52
,8
22

.7
5

52
,9
57

.7
2

12
00

6
(−

1,
0)

3
1.
00

0.
00

0.
00

0.
00

52
,6
93

.4
3

52
,8
37

.5
1

52
,8
15

.1
8

52
,9
40

.4
7

Fo
r
ea
ch

se
tti
ng

,w
e
re
po

rt
th
e
pr
ob

ab
ili
ty

of
se
le
ct
in
g
a
C
la
yt
on

,G
um

be
l,
Jo
e,
or

Fr
an
k
co
pu

la
vi
a
B
ay
es
ia
n
in
fo
rm

at
io
n
cr
ite

ri
on

(B
IC

),
an
d
m
ed
ia
n
B
IC

.R
es
ul
ts
ar
e
ba
se
d

on
B

=
25
0
re
pl
ic
at
es

123



A. Russo, A. Farcomeni

households as unit of the analysis. We restrict the sample to Italian households having
at least two members, and whose housing status (ownership or rental) was constant
over the considered period, finally having a panel of n = 1311 households.

First, we consider income, as an obvious and very well-established indicator. We
focus on equivalised disposable income, defined as “the total income of a household,
after tax and other deductions, that is available for spending or saving, divided by the
number of household members converted into equalised adults”. Traditional measures
of poverty require checkingwhether an individual’s income is belowa certain threshold
considered to be the minimum required for a reasonable standard of living. This poses
however some challenges, being the choice of poverty lines arbitrary anddebatable. For
the purpose of international comparability, a standard poverty line is often considered
to be US$1.90 per person per day in purchase parity power (PPP). Since we restrict to
Italian data, we here rely on the European convention, according to which the poverty
threshold is set at 60% of the equivalised median national income. Our first outcome
Yit1, therefore, is a binary indicator of the household equivalised disposable income
being below 60% of the national median.

Secondly, we consider material deprivation. EUROSTAT traditionally measures
material deprivation through a counting approach of the number of items that an
household is lacking (in a given year) within the following list:

1. Ability to keep the house adequately warm
2. Ability to afford 1-week annual holiday
3. Ability to afford a meal (meat, chicken, fish or eqv.) every other day
4. Ability to pay for unexpected expenses
5. Ability to afford a telephone
6. Ability to afford a color television
7. Ability to afford a washing machine
8. Ability to afford a car for private use
9. Avoid arrears on mortgage, rent, utility bills or loans.

Our second outcome Yit2, therefore, is a count. Finally we consider work intensity,
whose measurement has become complex due to very heterogeneous work spells and
conditions in the population.According to the standards set by the International Labour
Office the employment rate is simply the proportion of working-age people who have
been working for at least an hour in a reference week. However, if we considered
only this extensive margin, we would have people working exactly one hour per week
being counted as those working forty hours. We rely here on Brandolini and Viviano
(2016), who propose a generalized employment rate (GER) measure. We define the
GER measure as GERi t = ∑Ni

j=1

(
w j t

)
e jt/Ni ; where Ni is the number of working-

age members of the i th household, e jt takes value 1 if individual j has worked in
year t , and w j t is a measure of work intensity for the j th individual at time t . In our
implementation, we define w j t = (m jt/12)(h jt/40), where m jt are the number of
months worked in year t and h jt is the individual’s average weekly working time
in year t . The resulting GER indicator is actually discrete, based on a few classes
with little interpretability, and with a spike at wi t = 1. Even after transformation,
it cannot be well-approximated by any continuous parametric distribution. In order
to obtain a meaningful and interpretable indicator, we divide this outcome in four
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ordered classes, where Yit3 = 0 if GERi t ≥ 1 (the individuals in the household
work an average of forty hours per week, or more), Yit3 = 1 if 0.75 ≤ GERi t < 1,
Yit3 = 2 if 0.5 ≤ GERi t < 0.75, and Yit3 = 3 otherwise. A data analysis based on a
different transformation of the variables, leading one Gaussian, one Bernoulli, and one
Poisson outcome, is reported in theWebAppendix.We finally select two covariates for
each poverty dimension: we include three dummy variables to discriminate between
territorial regions (North–East, South and islands, North–West; where Central Italy is
used as reference category), and time. About 14% of the households have an income
below the poverty threshold in each year. The quantiles for the counting measure of
material deprivation are constant over time, with a median of zero, third quartile of
two, and maximum value of seven. The average number of active items is slightly
above one in each year. Also work intensity is marginally approximately constant
over time, with 40% of the households having the highest level of work intensity,
approximately one third with a value of one, and about 10% for each of the other two
categories (corresponding to lower and lower work intensity). Predictably, a positive
association can be seen among each couple of indicators. The point biserial correlation
between Yit1 and Yit2 is slightly less than 0.4 each year, similarly the one between
Yit1 and Yit3 is about 0.2 each year. Kendall’s τ between Yit2 and Yit3 is 0.25 or
slightly less in each year. These association measures are actually slightly low when
one realizes that the first two indicators should actually measure the same latent trait.
Similarly, a mismatch is easily observed between poverty and work intensity. We now
give some examples to fix the ideas, restricting to 2017 for simplicity. In 2017, 46%
of the families with an income above the poverty line have high work intensity. This
proportion decreases only to 42% for households whose income is below the poverty
line: a surprisingly large proportion of households is made of “working poors” who
have very low income despite constantly being involved in full time jobs. Similarly, a
surprising share of 22%of households with low income do not have any activematerial
deprivation items, and 19% only one. The mismatch between work intensity and
material deprivation is even more surprising, as families with highest work intensity
are actually more likely to have two or more active items in the deprivation list than
families with 0.75 ≤ GERi t < 1 (24.5% vs. 18.2%). This might be explained by
the occurrence of more qualified jobs with higher wages and less working hours. On
the other hand, even when 0.5 ≤ GERi t < 0.75 households with two or more active
items are not common (only 26.8%). Additionally, more than half of the households
with the lowest level of work intensity have at most one active item in the material
deprivation list: they are able to make ends meet despite their members working only
occasionally. In Fig. 1, we visualize the complex marginal interrelationships among
our three endpoints. On the horizontal and vertical axes of the figure, we condition
on the different levels of material deprivation (Yit2) and work intensity (Yit3). In each
block, as obtained by a combination of the levels of these two outcomes, we show
the proportion of households with equivalised disposable income below the poverty
threshold, where darker color indicates larger proportions.

We now fit Latent Markov models with dependency structures modulated by the
four parametric copulas described in Table 1, and k = 1, . . . , 5 latent masses. In order
to perform model selection, we use the Bayesian Information Criterion (BIC). Results
are reported in Table 6. It can be seen that the model corresponding to the lowest BIC
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Fig. 1 EU SILC data. Fraction of households with equivalised disposable income below the poverty thresh-
old, by material deprivation and work intensity levels

Table 6 EU SILC data

Frank Clayton

k �∗(θ∗) #par BIC k �∗(θ∗) #par BIC

1 −15,755.79 18 31,619.26 1 −15,857.04 18 31,821.76

2 −13,964.45 26 28,115.55 2 −13,976.39 26 28,139.42

3 −13,653.87 36 27,566.18 3 −13655.35 36 27,569.12

4 −13,300.74 48 26,946.05 4 −13,318.14 48 26,980.85

5 −13,300.56 62 27,046.20 5 −13,318.09 62 27081.25

Joe Gumbel

k �∗(θ∗) #par BIC k �∗(θ∗) #par BIC

1 −15,679.96 18 31,467.59 1 −15,676.34 18 31,460.36

2 −13,977.36 26 28,141.35 2 −13,974.31 26 28,135.26

3 −13,648.69 36 27,555.81 3 −13,647.20 36 27,552.83

4 −13,322.28 48 26,989.12 4 −13,317.56 48 26,979.70

5 −13,322.21 62 27,089.50 5 −13,317.56 62 27,080.19

Log-likelihood at convergence, number of parameters and Bayesian Information Criterion (BIC) for latent
Markov models with different values of k and copula functions
Bold is used to highlight the model specification associated to the lowest BIC value (selected model)

is based on k = 4 latent masses, with a Frank copula modulating the dependency
structure among the outcomes.

For the case of a Frank copula and k = 4we report estimates for α in Table 7 and for
β in Table 8. Parameters’ estimates for the latent structure are summarized in Table 9.
Standard errors in parentheses are obtained through a parametric bootstrap procedure.
The estimated association parameter ξ̂ is 1.021, with 95% confidence interval equal to
(0.617, 1.424).Whenmarginals are continuous theKendall’s τ for a Frank copulawith
association parameter ξ corresponds to τ = 1 + 4 (D1(ξ) − 1) /ξ, where D1(ξ) =
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Table 7 EU SILC data

α̂ Yit1 Yit2 Yit3 = 0 Yit3 = 1 Yit3 = 2 Yit3 = 3

k1 −6.332
(0.174)

−1.788
(0.085)

– −0.648
(0.135)

−1.930
(0.135)

−3.348
(0.155)

k2 −5.737
(0.095)

0.418
(0.075)

– −0.758
(0.198)

−3.508
(0.094)

−4.216
(0.084)

k3 −1.225
(0.191)

0.689
(0.061)

– 4.662
(0.047)

2.094
(0.134)

0.355
(0.124)

k4 0.403
(0.264)

0.500
(0.146)

– −1.253
(0.146)

−2.975
(0.079)

−3.124
(0.097)

Estimated latent intercepts for a LM model with k = 4 latent masses and Frank copula. Standard errors in
parentheses

Table 8 EU SILC data
β̂ NW SI NE Time

Yit1 0.233
(0.239)

1.343
(0.207)

0.786
(0.260)

0.047
(0.054)

Yit2 0.137
(0.068)

0.364
(0.057)

0.055
(0.079)

-0.048
(0.015)

Yit3 -0.367
(0.139)

0.122
(0.118)

-0.169
(0.181)

-0.051
(0.028)

Estimated marginal-specific regression coefficients for a LM model
with k = 4 latent masses and Frank copula. Standard errors in paren-
theses. NW: Northwest, SI: South and Islands, NE: Northeast. Central
Italy is reference category

Table 9 EU SILC data
π̂ k1 k2 k3 k4

0.525
(0.024)

0.206
(0.023)

0.186
(0.015)

0.083
(0.012)

�̂ k1 k2 k3 k4

k1 0.939
(0.011)

0.050
(0.011)

0.009
(0.004)

0.002
(0.002)

k2 0.081
(0.022)

0.874
(0.025)

0.024
(0.010)

0.020
(0.010)

k3 0.044
(0.017)

0.063
(0.018)

0.864
(0.019)

0.029
(0.009)

k4 0.006
(0.010)

0.089
(0.035)

0.025
(0.018)

0.879
(0.032)

Estimated initial and transition probabilities for aLMmodelwith k = 4
latent masses and Frank copula. Standard errors in parentheses

ξ -1
∫ ξ

0 t ·(et −1)-1dt is the Debye function of the first type. Thismapping is not entirely
accurate with discrete marginals, still it gives τ̂ = 0.112 (95% CI 0.068–0.155) in our
example.

The results of the data analysis lead to the following considerations. First of all,
part of themismatch/low association among outcomes can be explained by unobserved
heterogeneity. The latent states indicate different levels of overall poverty, where the
first indicates wealthy households that are unlikely to have a disposable income below
the poverty line, have a low number of active material deprivation items on average,
and have the highest work intensities. The other latent states can be characterized by
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different (increasing) levels of monetary poverty, but material deprivation and work
intensity are not similarly monotone. For instance, propensity to material deprivation
in latent states two to four is approximately constant (with a peak in latent state
three) despite a growing propensity to low income. Similarly, in latent state four we
can see a slightly large propensity to high work intensity despite high likelihood of
being low income and materially deprived. Consequently, it can be concluded that, for
idiosyncratic reasons, there actually exist a non-negligible share of peculiar households
with mismatch among two or even three outcome levels.

Secondly, even after taking into account this fact, mismatch among outcomes per-
sists. This is testified by the low estimate for the association parameter, which indicates
a low residual association among the outcomes (that is, conditionally on the latent
state). It can be concluded then that one or more outcomes are possibly not well mea-
sured. A deep assessment about issues with measuring material deprivation can be
found in Dotto et al. (2018) and Farcomeni et al. (2022) and can be summarized in the
possible lack of unidimensionality and measurement invariance of the official indica-
tors. It might also be supposed that equivalised disposable income by itself is not a
very good indirect measure of living conditions, as households with similar income
levels might be better or worse at making ends meet depending on several internal and
contextual factors (e.g., purchase power in the local area). Additionally, there might be
unemployed people who have a very low income but are not materially deprived due
to support from relatives, which is a well-known safety net in Italy, or inherited wealth
assets. A further source of unobserved heterogeneity might be in work intensity, due
to the occurrence of undeclared or informal work spells. Additional comments involve
the regression coefficients and latent distribution. It can be seen that as common with
many indicators, southern Italy and its islands are associatedwith a significantly higher
risk of low income and high material deprivation. Households living in the northwest-
ern regions are more likely to have higher work intensity than those living in central
Italy, but they are also more likely to be materially deprived (possibly due to lower
purchase power in those regions). On the other hand, households living in the north-
east of Italy are more likely to have low income, but we do not have evidence that
they experience more material deprivation than households located in central Italy. It
can also be seen that over time the propensity to material deprivation and low work
intensity have generally decreased in the period considered. Finally, the estimated
transition matrix indicates that households are generally trapped in their latent state,
with 6% to 13% switching to another latent state at each time occasion.

7 Conclusions

In this work, we show a natural way of relaxing the conditional independence assump-
tion in multivariate latent Markov models. The copula framework is flexible and
includes conditionally independent marginals as a special case. We have proposed a
rather general framework formoderately dimensionalmodelswith arbitrarymarginals,
in a regressive framework. Parameterization of copula parameters in terms of covari-
ates, as for instance done in Donat and Marra (2018), is rather straightforward in our
framework; as is a similar parameterization for the latent distribution. The full likeli-
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hood approach is very effective and useful, and it provably reduces bias in real data
examples, where residual contemporary dependence is the norm rather than the excep-
tion.Our interest residedmainly inmodeling discrete outcomes, possibly togetherwith
continuous ones. In the development of our theory, we have evaluated several approx-
imation strategies to the likelihood, all of which had strong limitations. The need to
compute PDFs in the presence of discrete marginals somehow restricts the approach
to Archimedean copulas for moderately sized data sets (as the motivating example), as
Gaussian and T copulas do not scale well. The problem with Gaussian and T copulas
resides in the fact that, in order to compute (8), the CDF is necessary; and this might
be computationally demanding even for small dimensional problems. These compu-
tational issues do not apply to the adopted one-parameter copula functions, for which
the CDF is available in closed form. On the other hand, the estimate of the copula
parameter ξ̂ might be slightly more difficult to interpret, and post-analysis mapping
to measures of association (like we did in the real data example) might be necessary.
Furthermore, the dependency structuremight be somehow restricted within the family.
Flexible and simple copula structures are available, but they might be restricted to two
or anyway low dimensions, e.g., Zachariah et al. (2024). In further work, we plan to
tackle these issues by exploring the use of Vine copulas. Another interesting route
for further research involves reparameterizing the copula parameter as a function of
covariates as well. This would be straightforward from a modeling perspective, but it
might complicate interpretability and identifiability of the model.

We have also described a novel real data example about an open problem in eco-
nomics, related to measurement of poverty. We have underlined how commonly used
indicators do not seem to be able to catch the complexity of the poverty phenomenon,
leading to surprising mismatch between income, material deprivation, and work inten-
sity. This seems to be due both to the presence of a non-negligible share of peculiar
households, and to how the constructs are measured, which leaves many open ques-
tions for further work.

Supplementary information A Web Appendix reports details on the simulation
scenarios, and real example with one continuous and two discrete outcomes.
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Acknowledgements The authors are grateful to Prof. Roberto Zelli for advice on a first draft, and to two ref-
erees for constructive suggestions. This study was funded by the European Union—NextGenerationEU, in
the framework of the GRINS—Growing Resilient, INclusive and Sustainable project (GRINS PE00000018
- CUP E83C22004690001). The views and opinions expressed are solely those of the authors and do not
necessarily reflect those of the European Union, nor can the European Union be held responsible for them.

Funding Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-
CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

https://doi.org/10.1007/s11749-024-00919-9
https://doi.org/10.1007/s11749-024-00919-9


A. Russo, A. Farcomeni

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Anderson G, Farcomeni A, Pittau MG, Zelli R (2019) Multidimensional nation wellbeing, more equal yet
more polarized: an analysis of the progress of human development since 1990. J Econ Dev 44(1):1–22

Anderson G, Farcomeni A, Pittau MG, Zelli R (2019) Rectangular latent Markov models for time-specific
clustering, with an analysis of the well being of nations. J R Stat Soc (Ser C) 68:603–621

Bartolucci F, Farcomeni A (2009) Amultivariate extension of the dynamic logit model for longitudinal data
based on a latent Markov heterogeneity structure. J Am Stat Assoc 104:816–831

Bartolucci F, Farcomeni A (2015) A discrete time event-history approach to informative drop-out in mixed
latent Markov models with covariates. Biometrics 71:80–89

Bartolucci F, Farcomeni A, Pennoni F (2013) Latent Markov models for longitudinal data. Chapman &
Hall/CRC Press, Boca Raton

Bartolucci F, Farcomeni A, Pennoni F (2014) Latent Markov models: a review of a general framework for
the analysis of longitudinal data with covariates (with discussion). TEST 23:433–486

Brandolini A, Viviano E (2016) Behind and beyond the (head count) employment rate. J R Stat Soc Ser A
(Stat Soc) 179(3):657–681

DeRuiter SL, Langrock R, Skirbutas T, Goldbogen JA, Calambokidis J, Fiedlaender AS, Southall BL
(2017) A multivariate mixed hidden Markov model for Blue Whale behaviour and responses to sound
exposure. Ann Appl Stat 11:362–392

Donat F, Marra G (2018) Simultaneous equation penalized likelihood estimation of vehicle accident injury
severity. J R Stat Soc (Ser C) 87:979–1001

DottoF, FarcomeniA,PittauMG,ZelliR (2018)Adynamic inhomogeneous latent statemodel formeasuring
material deprivation. J R Stat Soc (Ser C) 182:495–516

Farcomeni A (2015) Generalized linear mixed models based on latent Markov heterogeneity structures.
Scand J Stat 42:1127–1135

Farcomeni A, PittauMG, Viviani S, Zelli R (2022) A European measurement scale for material deprivation.
https://doi.org/10.21203/rs.3.rs-2250804/v1

Genest C, Nevslehová J (2007) A primer on copulas for count data. ASTIN Bull J IAA 37(2):475–515
Hardle WK, Okhrin O, Wang W (2015) Hidden Markov structures for dynamic copulae. Econom Theory

31:981–1015
Henn LL (2022) Limitations and performance of three approaches to Bayesian inference for Gaussian

copula regression models of discrete data. Comput Stat 37:909–946
HohbergM,Donat F,Marra G, Kneib T (2021) Beyond unidimensional poverty analysis using distributional

copula models for mixed ordered-continuous outcomes. J R Stat Soc (Ser C) 70:1365–1390
Joe H (2014) Dependence modeling with copulas. CRC Press, Boca Raton
Martino A, Guatteri G, Paganoni AM (2020) Multivariate hidden Markov models for disease progression.

Stat Anal Data Min ASA Data Sci J 13:499–507
Merlo L, Maruotti A, Petrella L, Punzo A (2022) Quantile hidden semi-Markov models for multivariate

time series. Stat Comput 32:61
Nelsen R (2006) An introduction to copulas. Springer, New York
Nikoloulopoulos AK (2013) Copula-based models for multivariate discrete response data. In: Jaworski P,

Durante F, Härdle WK (eds) Copulae in mathematical and quantitative finance. Springer, Berlin, pp
231–249

Orfanogiannaki K, Karlis D (2018) Multivariate Poisson hidden Markov models with a case study of
modelling seismicity. Aust N Z J Stat 60:301–322

Otting M, Karlis D (2023) Football tracking data: a copula-based hidden Markov model for classification
of tactics in football. Ann Oper Res 325:167–183

OttingM, Langrock R,Maruotti A (2023) A copula-based multivariate hiddenMarkovmodel for modelling
momentum in football. AStA Adv Stat Anal 107:9–27

Punzo A, Ingrassia S, Maruotti A (2021)Multivariate hiddenMarkov regression models: random covariates
and heavy-tailed distributions. Stat Pap 62:1519–1555

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21203/rs.3.rs-2250804/v1


A copula formulation for multivariate...

Russo A, Farcomeni A, Pittau MG, Zelli, R (2022) Covariate-modulated rectangular latent Markov models
with an unknown number of regime profiles. Stati Model (in press)

Townsend P (1987) Deprivation. J Soc Policy 16:125–146
Townsend P, Gordon D (1991) What is enough? New evidence on poverty allowing the definition of a

minimum benefit. In: Alder M, Bell C, Clasen J, Sinfield A (eds) The sociology of social security.
Edinburgh University Press, Edinburgh, pp 35–69

Trivedi P, Zimmer D (2017) A note on identification of bivariate copulas for discrete count data. Econo-
metrics 5:10

WhelanCT,LayteR,MaîtreB (2004)Understanding themismatch between incomepoverty and deprivation:
a dynamic comparative analysis. Eur Sociol Rev 20(4):287–302

Wu B, de Leon AR, Withanage N (2013) Joint analysis of mixed discrete and continuous outcomes via
copula models. In: de Leon AR, Chough KC (eds) Analysis of mixed data. Chapman and Hall/CRC,
New York

Zachariah SR, Arshad M, Pathak AK (2024) A new class of copulas having dependence range larger than
FGM-type copulas. Statistics & Probability Letters 206:109988

Zilko AA, Kurowicka D (2016) Copula in a multivariate mixed discrete-continuous model. Comput Stat
Data Anal 103:28–55

ZucchiniW,MacDonald IL (2009)HiddenMarkovmodels for time series: an introduction usingR. Springer,
New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A copula formulation for multivariate latent Markov models
	Abstract
	1 Introduction
	2 Background on copula modeling
	3 The model
	4 Inference
	4.1 Observed likelihood
	4.2 Expectation–maximization algorithm

	5 Simulations
	6 An analysis of multidimensional aspects of poverty in Europe
	7 Conclusions
	Acknowledgements
	References


