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A. Details on simulation settings

We generate panels of dimensions n = {800, 1200}, Ti = {4, 6}, where outcomes are
three-dimensional responses whose dependency structure is captured by a Frank copula
with association parameter ξ = {0, 2}.

For the case of mixed margins, we simulate from a latent Markov model with
k = 2 latent components. The first dimension Yit1 is a Gaussian response variable
with identity link function; the corresponding modeling assumption is therefore

µu := E [Yit1 | Uit = u] = α1u + β1Xit1

Yit1 | Uit = u ∼ N (µu, σ)

where σ is a common nuisance parameter.
A second outcome Yit2 is a binary outcome distributed as a Bernoulli, for which

we specify a logistic regression model of the form:

log

(
Pr(Yit1 = 1|Uit = u)

Pr(Yit1 = 0|Uit = u)

)
= α1u + β1Xit1.

The last dimension Yit3 is a count variable with Poisson distribution and log link
function, implying:

log (E(Yit2|Uit = u)) = α2u + β2Xit2.
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For each dimension, we generate two zero-centered Gaussian covariates with standard
deviation equal to 0.1, and fix marginal parameters:

α =

 -1.50 1.50

-1.50 1.50

-1.50 1.50

 ,

β =


 1.00 1.00

1.00 1.00

1.00 1.00

 ;

 -1.00 1.00

-1.00 1.00

-1.00 1.00


 ;

to obtain a total of sixteen simulation settings involving mixed margins. We fix

Π =

(
0.80 0.20

0.20 0.80

)
,

and π = (0.50 , 0.50).
We consider also the case of fully discrete response variables in order to mimic the

model that will be specified for the real data analysis. In these settings, two dimensions
Yit1 and Yit2 are, respectively, a binary outcome and a Poission-distributed count
variable, with link functions and resulting regression models that are identical to the
case of mixed margins described above. We replace the Gaussian outcome with a third
dimension Yit3 which is an ordered categorical variable taking values {0, 1, 2, 3, 4}, and
specify a global logit parameterisation of the form:

log

(
Pr(Yit3 ≥ z|Uit = u)

Pr(Yit3 < z|Uit = u)

)
= α3uz + β3Xit3,

for z = 0, 1, 2, 3. The latter can be simply inverted to obtain the conditional
distribution of Yit3. We let the number of latent states vary as k = {2, 3}. We set

β =


 1.00 1.00

1.00 1.00

1.00 1.00

 ;

 -1.00 0.00

-1.00 0.00

-1.00 0.00


 ;

as coefficients modulating the effect of two dimension-specific Gaussian covariates with
zero mean and standard deviation equal to 0.1. When k = 2 we fix

α =


-1.00 1.00

-1.00 1.00

-0.50 2.50

-1.50 1.50

-2.50 0.50

 .
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When k = 3 we fix α as 
-1.50 0.00 1.50

-1.50 0.00 1.50

-0.50 1.00 2.50

-1.50 -0.50 1.50

-2.50 -1.50 0.50

 .

When k = 2 we specify the same initial distribution and transition matrix as before,
while when k = 3 we fix Π as  0.80 0.10 0.10

0.10 0.80 0.10

0.10 0.10 0.80

 ,

and π = (0.40 , 0.30 , 0.30) .

B. A multidimensional poverty analysis with
continuous and discrete outcomes.

We here report results for a case study in which we analyse a different multivariate
measure of poverty. We will now have a mix of continuous and discrete endpoints.

In order to allow for a direct comparison with the setup described in Section 6 of
the main paper, we let k = 4 and specify a Frank copula to capture the dependency
structure. We also, clearly, use the same households considered in Section 6 of the
main paper, analysing a panel of n = 1311 units observed over four waves from 2014
to 2017.

Our new endpoint is a trivariate indicator of living conditions consisting of a con-
tinuous, a binary, and a count response; as follows. First, we still rely on equivalised
disposable income as one indicator poverty, yet this time we do not threshold it. We
standardize households’ incomes by dividing each observed disposable income by the
MAD of the wave, and the compute the difference with respect to the maximum
income in order to obtain an increasing measure of poverty. We assume that condi-
tionally on the latent variable, and covariates, this endpoint is Gaussian; and use an
identity link function. We then consider work intensity as our second endpoint, where
generalised employment rates are computed as described in the main paper. We then
let Yit2 = I(GERit ≤ 1), where I(·) is the indicator function. Finally, Yit3 is a count
variable measuring active material deprivation items, as described in the main paper.

Estimates for the latent intercepts α̂ are reported in Table 1, while Table 2 sum-
marizes parameters’ estimates for the β̂ coefficients capturing the effects of covariates.
Table 3, finally, reports on the parameters modulating the latent structure. Esti-
mated standard errors are reported in parentheses for all parameters. The association
parameter is estimated as ξ̂ = 0.301, with 95% confidence interval (0.091, 0.529).

The conclusions that can be made from additional analysis are closely related to
the ones reported in the main paper, where we analysed three discrete endpoints. The
endpoints in the main paper are in our opinion more appropriate, most importantly
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α̂ Yit1 Yit2 Yit3

k1 9.782
(0.608)

0.280
(0.365)

-1.515
(0.167)

k2 13.553
(0.179)

0.949
(0.185)

-1.483
(0.208)

k3 15.180
(0.050)

1.578
(0.139)

-1.050
(0.115)

k4 16.128
(0.051)

1.460
(0.148)

0.484
(0.070)

Table 1: EU SILC data. Estimated latent inter-
cepts for a LM model with k = 4 latent masses and
Frank copula. Standard errors in parentheses. The
responses are assumed to be Gaussian, Bernoulli,
and Poisson.

β̂ NW SI NE Time

Yit1 0.049
(0.082)

0.617
(0.062)

0.222
(0.100)

-0.011
(0.008)

Yit2 -0.009
(0.139)

0.061
(0.136)

0.034
(0.143)

0.077
(0.025)

Yit3 0.039
(0.080)

0.597
(0.083)

0.118
(0.178)

-0.039
(0.014)

Table 2: EU SILC data. Estimated marginal-specific regression coefficients for a LM
model with k = 4 latent masses and Frank copula. Standard errors in parentheses.
NW: North West, SI: South and Islands, NE: North East. Central Italy is reference
category. The responses are assumed to be Gaussian, Bernoulli, and Poisson.

the thresholding of the disposable income leads to a measure of monetary poverty.
In this analysis we are on the other hand capturing heterogeneity among non-poor
households in terms of income. This is testified for instance by the fact that we find one
small mass clustering households with solid working and living standards, and richer
in monetary terms. This is likely to result from the different nature of the considered
monetary indicator included in the analysis, with the latent structure adapting to a
right-tailed continuous variable.

The main conclusion is still that, since latent intercepts lack overall monotonicity
and ξ̂ is moderately low, even conditionally on the covariates there is some missmatch
among the three living conditions indicators. For instance we observe households that
are not deeply lacking in monetary terms, do not display strong material deprivation,
yet have low levels of work intensity (state 2). Main interest for institutional authorities
and policy makers might reside in households in latent state 4, who exhibit the overall
worst living and working conditions: intercepts detect the strongest propensity to
material deprivation, low work intensity, and largest monetary margins with respect
to the richest households.

Finally, also in this analysis we observe high persistence of units in their latent
states; and estimated regression coefficients describe the same picture of the main
paper, with southern Italy and its islands having households at the highest risk of
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π̂ k1 k2 k3 k4

0.018
(0.005)

0.128
(0.016)

0463
(0.019)

0.391
(0.023)

Π̂ k1 k2 k3 k4

k1 0.725
(0.062)

0.230
(0.056

0.045
(0.032)

0.000
(0.001)

k2 0.038
(0.011)

0.943
(0.018)

0.011
(0.014)

0.009
(0.006)

k3 0.001
(0.001)

0.011
(0.005)

0.988
(0.006)

0.000
(0.001)

k4 0.000
(0.001)

0.001
(0.001)

0.011
(0.0182)

0.987
(0.012)

Table 3: EU SILC data. Estimated initial and transition probabilities for a LM model
with k = 4 latent masses and Frank copula. Standard errors in parentheses. The
responses are assumed to be Gaussian, Bernoulli, and Poisson.

material and monetary deprivation, compared to the North-East and the industrialised
North-West where there might be more job opportunities than in other areas.
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