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a b s t r a c t

We propose a model based on discrete latent variables, which
are spatially associated and time specific, for the analysis of
incident cases of SARS-CoV-2 infections. We assume that for
each area the sequence of latent variables across time follows
a Markov chain with initial and transition probabilities that also
depend on latent variables in neighboring areas. The model is
estimated by a Markov chain Monte Carlo algorithm based on a
data augmentation scheme, in which the latent states are drawn
together with the model parameters for each area and time. As
an illustration we analyze incident cases of SARS-CoV-2 collected
in Italy at regional level for the period from February 24, 2020,
to January 17, 2021, corresponding to 48 weeks, where we use
number of swabs as an offset. Our model identifies a common
trend and, for every week, assigns each region to one among
five distinct risk groups.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

COVID-19 syndrome is due to newly discovered SARS-CoV-2 coronavirus, which acquired the
bility to infect humans, and for human-to-human transmission, during 2019. See Hu et al. (2020)
nd references therein for a review.
Due to very limited pre-existing immunity, SARS-CoV-2 has the potential to be highly infectious.

imultaneously, pathogenicity is high enough to generate a proportion of severe cases (Buss et al.,
021; Del Sole et al., 2020) that can overwhelm health systems (Grasselli et al., 2020; Farcomeni
t al., 2021a) when prevalence is high. Monitoring the epidemics is therefore a priority for policy,
lanning, and resource allocation.
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Public data for Italy are available at regional level. These include incident cases (i.e., new
ositives), prevalent cases (i.e., currently infected), deaths, number of infected currently in hospital
ards, number of infected specifically hospitalized in Intensive Care Units, number of swabs, and
umber of tested cases. Data are timely updated, every day at around 6p.m., by the Italian Civil
rotection Department. However, counts are subjected to measurement errors and biases of various
ature, among which we mention two important sources of error that we take into account in our
odel. First of all, data collection is not standardized and, in many areas, not in electronic form.
his results in frequent late notifications and communication errors that are corrected afterwards.
djustments are made to the daily count, in order to obtain the correct cumulative number of cases;
his may make daily counts inconsistent, and occasionally negative. This is the main reason why we
ill work with weekly incidence, even if counts are available on a daily basis. This is not ensured
o resolve measurement issues but, as can be seen from our descriptive analyses, it mitigates them
ufficiently. Secondly, it can be easily argued that the most prominent source of bias arises from
ndercount. Several infections from SARS-CoV-2 are asymptomatic or paucisymptomatic, and will
asily go undetected (Li et al., 2020). This is linked to the difficulties in testing and tracing (Contreras
t al., 2021). Indeed, SARS-CoV-2 infection at first could be detected only through polymerase
hain reaction of nasopharingeal swabs, whose availability was very limited, and yet has not
caled sufficiently. Notably, in the first months of 2020, swabs were mostly used in Italy for
onfirmation of severe symptomatic cases, with the exception of Veneto and some provinces of
ther regions. Diagnostic testing was later extended also to asymptomatic subjects, through contact
racing and screening strategies. Contact tracing efforts have varied wildly over time and space due
o unobserved reasons (e.g., availability of swabs, tracers, underlying incidence, policies), making
he proportion of identified cases highly and unpredictably variable over time and space. This is
nother important reason why we will model weekly counts using swabs as an offset, essentially
tudying positive rate rather than incidence. We prefer to offset with respect to the number of
wabs rather than that of tested cases, as the latter has been added to the data set only starting
rom April 19, 2020. More importantly, a positive rate defined with respect to the number of swabs
as been identified by WHO as an official indicator of a nation’s ability to flatten the curve.
Being focused on weekly positive rate, and on a flexible model that can take into account spatio-

emporal unobserved heterogeneity, we claim that our analysis is somehowmore reliable than more
ommon analyses simply focused on fixed-effects models for daily incident cases. On the other hand,
ur results should be interpreted with some care: a high positive rate is an indication of inability
o perform contact tracing, and only an indirect indication of high incidence.

In order to analyze data of the type described above, we propose a model based on discrete latent
ariables, so that regions may be clustered in groups corresponding to different levels of severity.
ore precisely, we adopt a model with a structural component formulated in the spirit of Bartolucci
nd Farcomeni (2021). Discrete latent variables are assumed to depend on the current status of their
eighbors according to an auto-logistic model (Besag, 1974). More precisely, each area-time-varying
atent distribution depends, via a logistic parameterization, on the latent states of the neighbors
or the same time occasion, and on the previous latent state for the same site (as in a standard
idden Markov model). For each geographical region, the sequence of latent variables is assumed
o follow a first-order Markov chain with initial and transition probabilities depending on the
atent states of the neighboring areas. The model may be seen as an extension of a hidden Markov
odel for longitudinal data (Bartolucci et al., 2013, 2014), accounting for spatial interaction. From
nother perspective, we are adopting a temporal extension of a hidden Markov field model (Qian
nd Titterington, 1991; Green and Richardson, 2002; Spezia et al., 2018) for spatial data, based
n discrete latent variables. Unlike Bartolucci and Farcomeni (2021), which is restricted to binary
utcomes, in this work we outline a class of models based on general parametric assumptions on the
utcome. The proposed inferential strategy seems to be stable under different model specifications.
nother distinctive feature with respect to Bartolucci and Farcomeni (2021), that we find very useful
o modeling COVID-19 data, is that a common trend is estimated through splines, therefore without
trict parametric assumptions on its shape. This allows us to automatically fit more pandemic waves
ithin the same model. On the other hand, more common parametric models, typically based on

ogistic growth curves (e.g., Cabras, 2020; Girardi et al., 2020; Alaimo Di Loro et al., 2020), are
2
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restricted to modeling only a single wave at a time, and often involve arbitrarily setting an initial and
final date for the specific wave. For model estimation we adopt a Markov chain Monte Carlo (MCMC)
algorithm that extends the proposal of Bartolucci and Farcomeni (2021) to the model class here
adopted. The algorithm is based on data augmentation (Tanner and Wong, 1987), and alternates
different steps at which parameter values and latent states are drawn. For selecting the number of
latent states we adopt a simple strategy based on post-processing the MCMC output, thus avoiding
computational overheads and issues with respect to estimating the marginal likelihood or ratios of
marginal likelihoods.

The particular model we use for COVID-19 data assumes that the number of incident cases for a
ertain area and time occasion follows a Poisson regression model, with offset equal to the logarithm
f the number of swabs, conditionally on a linear predictor that depends on a specific discrete latent
ariable. In particular, the log-linear predictor is based on splines of time of suitable order common
o all areas, and a shift that depends on the value of the underlying latent variable. This allows us
o separate a common time trend from unobserved heterogeneity, which is completely captured by
he latent variable. Additionally, our specification allows us to cluster areas with respect to shifts
rom the common trend, an operation that can be used to identify risk profiles in an unsupervised
anner. Italian authorities have worked for some time with three main risk profiles (areas can be
ellow, orange, or red) and have recently increased the number of risk profiles to five (adding white
nd ‘‘dark orange’’ groups). Risk profiles are currently identified according to an algorithm which is
ainly based on estimates of effective reproductive number, restricted to the symptomatic cases.
The rest of the paper is organized as follows. In the following section we illustrate the as-

umptions of the proposed model. Bayesian inference, and in particular the MCMC algorithm for
arameter estimation, is described in Section 3 together with model selection. The application to
talian regional data is described, together with the data structure, in Section 4. Section 5 provides
ome conclusions, and lists routes for possible extensions.

. Model assumptions

Let Yit be the count variable of interest for area i at time t , where i = 1, . . . , n and t = 1, . . . , T .
In our context this variable corresponds to the daily number of positives in a certain region. Let yit
denote the observed value of Yit , with all values collected in the matrix Y . Finally, we represent the
spatial structure by the indicator variables cij, where cij = 1 if area j is in the neighborhood of i (and
viceversa) and cij = 0 otherwise, for i, j = 1, . . . , n.

The first assumption of our model is that a discrete latent variable Uit is associated to each
rea i and time t so that, given the set of all these latent variables, the response variables Yit are
onditionally independent. These latent variables have k support points, referred to as latent states,
labeled from 1 to k. We assume that Yit , conditionally on Uit , has a distribution belonging to the
natural exponential family (see also McCullagh and Nelder, 1989; Farcomeni, 2015):

p(yit |Uit = u, η, ψ) = exp {[yitηit (u) − c(ηit (u))]/[a(ψ) − b(yit , ψ)]} , (1)

where functions a(·), b(·), and c(·) are known, while ηit (u) is a parameter of interest andψ a nuisance
parameter. We then adopt a specific link function g(·) and assume that

g(ηit (u)) = ξu + b′

tβ, (2)

where ξu is an intercept specific to latent state u and bt is the base vector at time t of splines of
a suitable order r , with prespecified knots (e.g., Wood, 2017). The parameters ξ1, . . . , ξk, together
with β, will collected in the vector φ.

In our application we assume that Yit , conditional on Uit , follows a Poisson regression model with
offset oit . The offset is set equal to the logarithm of the number of swabs in the same area and for
the same period. The log-linear predictor depends additionally on the value of the underlying latent
variable, plus a common trend that is independent of the latent state. More formally, we assume
that

Y |U = u ∼ Pois(λ (u)), i = 1, . . . , n, t = 1, . . . , T , u = 1, . . . , k, (3)
it it it

3
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log λit (u) = ξu + b′

tβ + oit . (4)

Regarding the assumptions on the distribution latent variables, we slightly generalize Bartolucci
nd Farcomeni (2021) by allowing general dependence structures among each latent state and its
eighbors, as we summarize in the following. Let ũit denote the vector of latent variables of the
eighbors of area i at time t , that is, variables ujt such that cij = 1. For the initial probabilities we

assume that

πi(u|ũi1) = p(Ui1 = u|ũi1) (5)

=
1

1 +
∑k

v=2 exp(f 1(ũi1)′γv)

{
1, u = 1,
exp(f 1(ũit )′γu), u = 2, . . . , k,

where f 1(ũit ) is a known function. In our implementation we specify f 1(·) so to obtain a vector with
a leading unity (for the intercept) and the remaining elements corresponding to the proportion of
neighbors currently dwelling in each latent state apart from the first. For ease of notation we collect
γu vectors in the matrix Γ = (γ2, . . . , γk)′. Regarding the transition probabilities, we assume a
similar parameterization, but using the starting state as reference category, that is,

πit (u|u′, ũit ) = p(Uit = u|Ui,t−1 = u′, ũit ) (6)

=
1

1 +
∑k

v=1
v ̸=u

exp(f t (ũit )′δu′v)

{
1, u = u′,

exp(f t (ũit )′δu′u), u ̸= u′,

or u′, u = 1, . . . , k. Here f t (·) is a possibly time-dependent known function. In our implementation
e specify f t (u) = f 1(u) for all t . Parameters for the transition distribution are collected in matrix

∆, with vectors δu′u for u′, u = 1, . . . , k, with u ̸= u′.
For all parameters we assume prior independence and that they a priori follow a zero-centered

Gaussian distribution. Formally, for Γ and ∆ we assume that

p(Γ) =

k∏
u=2

p(γu),

p(∆) =

k∏
u′=1

k∏
u=1
u̸=u′

p(δu′u).

3. Bayesian inference

In this section we describe an algorithm for approximately sampling from the posterior distribu-
tion, which is closely related to that in Bartolucci and Farcomeni (2021). We follow an augmentation
scheme according to which latent states are sampled from their full conditional at each iteration.
Let U denote a matrix with element uit for i = 1, . . . , n and t = 1, . . . , T . Formally, Bayes theorem
an be used to show that the posterior distribution p(φ,Γ,∆,U |Y ) is proportional to

p(φ)p(Γ)p(∆)p(U |Γ,∆)p(Y |U ,φ), (7)

where the normalizing constant cannot be obtained in closed form.
A particularly challenging factor to be computed among those in (7) is the full conditional

distribution of U , considering the assumed spatio-temporal dependence structure. We approximate
this distribution as in Bartolucci and Farcomeni (2021) through the following pseudo-probability

p̃(U |Γ,∆) =

n∏
i=1

[
π (ui1|ũi1,Γ)

T∏
t=2

π (uit |ui,t−1, ũit ,∆)

]
.

It must be clarified that the above expression coincides with the true probability under spatial inde-

pendence, whereas in general the quality of the approximation decreases as the spatial dependence

4
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becomes stronger. However, adopting this approximation is rather common in spatial statistics even
for simpler models, and leads to the definition of a pseudo-likelihood (Besag, 1975); see also Spezia
et al. (2018). A brief additional discussion on this choice is given in the concluding section.

Regarding the conditional distribution of the response variables Yit , with realizations collected
n Y , under the conditional independence assumption it is straightforward to see that

p(Y |U ,φ) =

n∏
i=1

T∏
t=1

p(yit |uit ,φ),

where p(yit |uit ,φ) is the density or probability mass function corresponding to the assumed
distribution, that belongs to the natural exponential family, defined in (1). Dependence on φ is
formulated according to (2). For our specific application, each response variable has a conditional
Poisson distribution defined as in (3) and link function defined in (4).

3.1. Markov chain Monte Carlo algorithm

In order to approximate the posterior distribution of model parameters, we rely on an MCMC
algorithm, with an augmented parameter space. The algorithm is based on repeating a sequence
of iterations for a large number of times R, where initial iterations are finally discarded (burn-in).
Each of these steps can be summarized as follows:

• Update of the φ parameters: A candidate update φ∗

j is sampled from a Gaussian distribution
centered at the current value φj, with variance τ 2φ . The proposed parameter vector is accepted
with probability

α(φ∗,φ) = min
(
1,

p(φ∗)p(Y |U ,φ∗)
p(φ)p(Y |U ,φ)

)
.

• Update of the latent variable values uit : here, differently from Bartolucci and Farcomeni
(2021), for i = 1, . . . , n and t = 1, . . . , T we use a pseudo-Gibbs sampling step, based on
the k-dimensional vector of probabilities qit with elements equal to

qit (u) =
p̃(U it (u)|Γ,∆)p(Y |U it (u),φ)∑k
v=1 p̃(U it (v)|Γ,∆)p(Y |U it (v),φ)

, u = 1, . . . , k,

where U it (u) is the current matrix of latent states U , with elements uit substituted by u. The
new value of Uit is drawn from a Multinomial distribution with parameters 1 and qit .

• Update of the γu parameters: for u = 2, . . . , k we propose a new parameter vector γ∗
u which

is accepted with probability

α(γu, γ
∗

u) = min
(
1,

p(γ∗
u)
∏n

i=1 πi(ui1|ũi1;Γ
∗
u)

p(γu)
∏n

i=1 πi(ui1|ũi1;Γ)

)
,

where Γ∗
u is the current matrix Γ with vector γu substituted by γ∗

u.
• Update of the δu′u parameters: for u′, u = 1, . . . , k, with u ̸= u′, we propose a new parameter

vector δu′u, denoted by δ∗

u′u, which is accepted with probability

α(δu′u, δ
∗

u′u) = min

(
1,

p(δ∗

u′u)
∏n

i=1
∏T

t=2 πit (uit |ui,t−1, ũit;∆
∗

u′u)

p(δu′u)
∏n

i=1
∏T

t=2 πit (uit |ui,t−1, ũit;∆)

)
,

where ∆∗

u′u is the matrix ∆ with parameter vector δu′u substituted by δ∗

u′u. The products in the
previous expression may be restricted to the only cases in which ui,t−1 = u′.

The MCMC output may be elaborated in the usual way to obtain point estimates and credible
ntervals for the model parameters. Similarly, latent states are predicted according to a maximum
posteriori rule, that is, the predicted latent state for each area at each time point corresponds to

he latent state most frequently sampled during the MCMC iterations, after ignoring burn-in.
5
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It is straightforward to see that the model is label independent and that consequently the poste-
ior distribution will have k! modes. There are several ways of dealing with this label switching issue.
n our implementation we use an on-line approach that, at every iteration of the MCMC algorithm,
aps the sampled parameters so that latent intercepts ξ1, . . . , ξk are increasingly ordered. This is
impler and implies a reduced computational load with respect to the post-processing approach
f Bartolucci and Farcomeni (2021).
For selecting the number of support points of the latent variables we use a similar approach

o Bartolucci and Farcomeni (2021). In our Bayesian framework it would be natural to set up a
eversible jump sampling scheme, after specification of a prior distribution for the number of latent
tates. This would anyway be cumbersome both from a computational and formal perspective,
s acceptance probabilities for transdimensional moves are not easily derived under the current
eneral model formulation. A simple solution is to repeatedly fit the model for different values
f k, and compare the results through an appropriate tool like an information criterion. This is
articularly advantageous from a computational perspective, as parallel computing can be set up in
rder to simultaneously fit the model for different number of latent states. In particular, we suggest
o rely on the WAIC (Watanabe, 2010; Vehtari et al., 2017), which is a measure of the predictive
ccuracy and is a direct by-product of our MCMC sampling scheme. For each model specification,
he WAIC is computed first by evaluating the log-pointwise predictive density

l̂pd =

n∑
i=1

T∑
t=1

log

(
1
R

R∑
r=1

p(yit |θ(r))

)
nd

p̂waic =

n∑
I=1

T∑
t=1

V̂ (log p(yit |θ)),

here V̂ (log p(yit |θ)) is the variance of log p(yit |θ(r)) across the R iterations producing parameter
ectors θ(r). The expected log-pointwise predictive density for a new data set is then computed as

êlpdwaic = l̂pd − p̂waic. (8)

ue to a certain instability in the estimation of this variance that we noted in the application, the
bove quantities are computed only using the final part of the MCMC iterations. An advantage of the
AIC is that it does not involve the marginal likelihood, and it is simpler to compute than other
ayesian criteria. Additionally, unlike information criteria adopted in the frequentist approach, it
oes not require computation of the maximum of the observed likelihood.

. Application

We applied the approach illustrated in the previous sections to the Italian regional data for the
eriod from February 24, 2020, to January 17, 2021. There are wide daily oscillations and a clear
eekly seasonality, with substantially fewer swabs on Sunday with respect to the rest of the week.

n order to overcome problems with data reporting we simply aggregate data at weekly level, as
lready mentioned. In the end, we record T = 48 weeks of observation for each of n = 21 areas
19 corresponding to Italian regions and 2 corresponding to the two provinces of the Trentino Alto
dige region: Bolzano and Trento).
The analysis is based on the number of new positives reported in each week, and the corre-

ponding number of swabs. The first is our outcome of interest yit , while, on the basis of the second,
e obtain the offset oit . Our aims with this analysis are to: (i) identify a common trend for Italy,
fter having taken into account variation at regional level that is due to time-varying unobserved
eterogeneity and spatial dependence; (ii) compare regional trends with respect to the common
rend; (iii) identify latent trajectories in order to identify different risk profiles; and (iv) identify
atent clusters in order to dynamically assign (i.e., specifically for each week) a region to a risk
rofile.
6
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Table 1
Descriptive statistics for the number of swabs, number of positives, and rate of positives at regional and Italian levels. P.
A. stands for "Provincia Autonoma".
Region Area N. swabs N. positives Rate

min mean max min mean max min mean max

Abruzzo South 52 12 104 31 584 5 838 4 666 0.0009 0.0538 0.2301
Basilicata South 39 4 274 12 729 0 267 1 591 0.0000 0.0426 0.1584
Calabria South 35 10 244 23 170 1 619 3 803 0.0001 0.0423 0.1641
Campania South 380 47 614 164 936 8 4 411 27 319 0.0003 0.0615 0.2209
Emilia-Romagna North 1 795 59 863 131 603 118 4 302 17 218 0.0032 0.0741 0.3449
Friuli Venezia Giulia North 243 22 081 55 090 3 1 297 5 721 0.0002 0.0423 0.1297
Lazio Center 724 63 045 188 071 5 4 035 18 460 0.0030 0.0436 0.1350
Liguria North 135 16 482 41 176 32 1 400 7 086 0.0036 0.0891 0.3660
Lombardia North 7 422 111 339 293 848 391 10 940 60 026 0.0072 0.0958 0.4609
Marche Center 103 13 161 41 775 8 1 066 4 527 0.0012 0.0837 0.4482
Molise South 6 2 707 7 928 0 161 914 0.0000 0.0450 0.1701
P. A. Bolzano North 21 8 616 26 080 1 714 4 210 0.0007 0.0648 0.3810
P. A. Trento North 116 10 363 22 639 0 525 1 740 0.0000 0.0584 0.3737
Piemonte North 362 43 306 145 671 38 4 582 27 686 0.0021 0.0932 0.3974
Puglia South 262 25 143 63 646 3 2 328 11 123 0.0003 0.0612 0.1875
Sardegna South 29 11 225 28 203 0 762 3 310 0.0000 0.0511 0.1465
Sicilia South 295 30 588 134 349 5 2 577 12 674 0.0003 0.0549 0.1764
Toscana Center 572 43 394 125 867 13 2 720 16 457 0.0015 0.0477 0.1840
Umbria Center 35 11 718 30 907 1 687 3 992 0.0001 0.0448 0.1805
Valle d’Aosta North 10 1 567 5 019 0 163 1 111 0.0000 0.0857 0.4264
Veneto North 6 862 77 527 177 645 26 6 344 26 282 0.0004 0.0660 0.2263

North 19 166 351 144 787 733 1034 30 267 144 572 0.0050 0.0775 0.2931
Center 1 434 131 318 360 265 45 8 509 43 381 0.0019 0.0497 0.1737
South 1 098 143 899 388 914 35 11 963 59 837 0.0006 0.0557 0.1568

Italy 21 698 626 361 1 510 190 1306 50 738 243 444 0.0040 0.0687 0.2543

4.1. Data description

In Table 1 we report descriptive statistics about the number of swabs, number of positives, and
ate of positives at regional and Italian levels. We observe heterogeneity among regions, with an
verage rate of positives that goes from 4.23% for Calabria to 9.58% for Lombardia, while the Italian
verage rate is 6.87%. Regarding the temporal pattern, in Figs. 1 and 2 we represent the weekly
ositive rate region by region, together with the Italian tendency obtained by fitting our model
ith k = 1, that is, a fixed-effect Poisson spline regression with offset. This regression model is
ased on splines of cubic order, and knots at each fourth week starting from the fifth.
In terms of partition between areas, the North presents an average rate of 7.75%, which is distant

rom that of the Center and South that have a rate around 5%. This is due to the fact that northern
egions, and especially Lombardia, were hit very hard during the first outbreak. The limited amount
f swabs available made it very difficult to perform contact tracing or screening, and for some time
wabs were reserved to symptomatic cases with a high index of suspicion, resulting in high positive
ates. This is apparent not only for Lombardia but also for Liguria, that experienced a comparatively
arge outbreak in the late Summer of 2020. A high heterogeneity is also observed in the Center,
here the Marche region has an average positive rate of 8.37%, much higher than the other central
egions, whereas less heterogeneity is observed in the South. All regions present two or three peaks
n the temporal distribution of positive rates, with Lombardia, Marche, and Piemonte clearly being
it harder than other regions in the first few weeks. An interesting example is that of Veneto, which
anaged well the first wave through relatively massive testing, but then had troubles in Autumn
020. It is speculated that this is due to the somehow restricted use of molecular swabs to confirm
esults of rapid antigen tests, which are less accurate.

The adjacency matrix has been defined by considering regions sharing land borders as neighbors.

s a consequence, seven regions have three neighbors, which is the mode. Two regions have six

7
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Fig. 1. Positive rate for twelve regions, together with the Italian tendency (in red). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

eighbors. Sardinia, which is an island, does not have any neighbor according to our definition. For
he other island, Sicily, we selected Calabria as the only neighbor. The two regions are separated by
he few kilometers wide Strict of Messina, with ferries going back and forth more than 150 times
day.
In Table 2 we report the average positive rate for each region in comparison with that of the

eighborhood, in order to better appraise the spatial pattern. The correlation between these two
uantities is equal to 0.589, which is in agreement with the heterogeneity of the regional situations
lready noted in commenting Table 1.

.2. Data analysis

In applying our approach we considered the model based on the splines and defined by Eqs. (3)
nd (4). In particular, as already mentioned, we considered splines of cubic order with knots every
our weeks starting from the fifth, the same adopted to describe the national Italian pattern in the
revious section.
8
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Fig. 2. Positive rate for nine regions, together with the Italian tendency (in red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Number of neighbors, average positive rate, and positive rate of the
neighborhood for each region.
Region N. neighbors Mean rate

Region Neighborhood

Abruzzo 3 0.0538 0.0519
Basilicata 3 0.0426 0.0579
Calabria 2 0.0423 0.0533
Campania 4 0.0615 0.0477
Emilia-Romagna 6 0.0741 0.0780
Friuli Venezia Giulia 1 0.0423 0.0660
Lazio 6 0.0436 0.0579
Liguria 3 0.0891 0.0726
Lombardia 5 0.0958 0.0690
Marche 5 0.0837 0.0569
Molise 4 0.0450 0.0518
P. A. Bolzano 3 0.0648 0.0803
P. A. Trento 3 0.0584 0.0805
Piemonte 4 0.0932 0.0884
Puglia 3 0.0612 0.0590
Sardegna 0 0.0511 –
Sicilia 1 0.0549 0.0423
Toscana 5 0.0477 0.0645
Umbria 3 0.0448 0.0503
Valle d’Aosta 1 0.0857 0.0932
Veneto 5 0.0660 0.0819
9
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Table 3
Results in terms of êlpdwaic and corresponding standard deviation for the
model based on splines for different values of the number of latent states
k.

u êlpdwaic se(êlpdwaic)

1 −169 866.03 15 747.37
2 −66 676.26 4 219.82
3 −35 660.02 2 096.13
4 −23 159.70 1 355.10
5 −19 690.56 1 201.52
6 −17 079.82 1 041.95

Table 4
Estimated intercepts of each latent state.

u ξ̂u se(ξ̂u)

1 −3.425 0.0100
2 −3.057 0.0114
3 −2.842 0.0130
4 −2.613 0.0126
5 −2.130 0.0112

For this model we considered a number of latent states (k) from 1 to 6. Each model was estimated
by an MCMC algorithm based on 105 iterations after a burnin of 2.5 × 104 iterations. In order to
educe the autocorrelation between consecutive draws, we fixed a thinning of 100. The convergence
iagnostics are good for all values of k, with low autocorrelation functions for the final chains. The
cceptance rates for the Metropolis-within-Gibbs steps are sensible for all parameters.
The results from the MCMC algorithm in terms of êlpdwaic, as defined in (8), and its standard

eviation, are reported in Table 3. On the basis of theese results, taking into account also the
tandard deviation, we selected the model based on k = 5 latent states. This result is particularly
nteresting since authorities have recently switched from a three-level to a five-level regime (white,
ellow, orange, dark orange, red). Our results suggest a mild evidence that, over time, there might
ctually have been already five different risk levels to differentiate regions with respect to a common
rend.

In order to interpret our risk stratification, we report in Table 4 posterior summaries for the
atent intercepts. We note that latent intercepts are roughly equally spaced, and that posterior
istributions seem to be well separated. Jointly with the estimate of the regression coefficients in
, which are not reported here because their interpretation is not straightforward, we obtain five
rajectories that are represented in Fig. 3.

The five latent states correspond to increasing degrees of severity in terms of number of positives,
onditionally on the number of swabs. The corresponding trajectories are represented in Fig. 3 in
omparison with the Italian trend directly obtained from the observed data, the same used in Figs. 1
nd 2. We observe that there are two trajectories that are uniformly below the national trend (for
tates 1–2) and two that are uniformly above the national trend (for states 4–5). The third state
orresponds to a trend very close to the national one, but not uniformly above or below the latter.
It is important to consider that each region may be in one of the five latent states at each

ime occasion, and many regions move among latent states during the observation period. Each
egion moves between these trajectories according to our hidden Markov formulation, depending
n the parameters γu and δu′u in (5) and (6), respectively. Rather than reporting the estimates of
hese parameters, to favor interpretability we directly illustrate the estimated latent structure by
eporting the distribution of the predicted latent states. In fact, the MCMC algorithm also allows us
o assign each region to a latent state in a dynamic fashion, on the basis of the number of visits to
hese states. The posterior distribution of the latent states for each region, across weeks, is reported
n Table 5. The time variation of assigned latent states, in each week, is shown in a heatmap in Fig. 4.

clear pattern emerges for most regions, which we better comment below. It shall be noted that

10



F. Bartolucci and A. Farcomeni Spatial Statistics 49 (2022) 100504

l
h

Fig. 3. Trajectories corresponding to the 5 latent states suitably ordered together with the Italian trend (dashed curve).

Table 5
Distribution of the predicted latent states across weeks at regional level.
Region Latent state

1 2 3 4 5

Abruzzo 0.383 0.404 0.170 0.021 0.021
Basilicata 0.617 0.191 0.085 0.064 0.043
Calabria 0.702 0.085 0.106 0.085 0.021
Campania 0.362 0.149 0.170 0.106 0.213
Emilia-Romagna 0.234 0.128 0.191 0.255 0.191
Friuli Venezia Giulia 0.745 0.149 0.085 0.021 0.000
Lazio 0.489 0.106 0.170 0.170 0.064
Liguria 0.043 0.213 0.064 0.319 0.362
Lombardia 0.043 0.106 0.234 0.170 0.447
Marche 0.298 0.213 0.277 0.043 0.170
Molise 0.553 0.298 0.043 0.043 0.064
P. A. Bolzano 0.426 0.128 0.234 0.191 0.021
P. A. Trento 0.511 0.170 0.021 0.213 0.085
Piemonte 0.021 0.106 0.234 0.383 0.255
Puglia 0.383 0.213 0.149 0.191 0.064
Sardegna 0.468 0.298 0.043 0.064 0.128
Sicilia 0.426 0.128 0.277 0.149 0.021
Toscana 0.553 0.277 0.149 0.021 0.000
Umbria 0.596 0.277 0.085 0.021 0.021
Valle d’Aosta 0.191 0.319 0.191 0.106 0.191
Veneto 0.532 0.213 0.085 0.064 0.106

Italy 0.408 0.199 0.146 0.129 0.119

Valle D’Aosta is one of the few regions without a clear emerging temporal pattern. We speculate this
is due to the high variability of positive rate over time related to the reduced number of tests and
positives in this small region. As a result, identification of small clusters could have an observable
effect on the positive rate in this region. We additionally report in Table 6 the predicted latent
states for each region across three periods, which define as the first wave (first fifteen weeks, until
beginning of June, 2020), the transition period (the following eleven weeks, until mid-August), and
the second wave (the remaining observation period).

Pooling information across regions, it can be argued that the latent state corresponding to the
owest risk is the most visited (40.8% of time-area occasions), whereas that corresponding to the

ighest risk is visited 11.9% of time-area occasions. The distribution of the latent states at regional

11
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Table 6
Distribution of the predicted latent states across epidemic phases, at regional level.
Region First wave Transition time Second wave

Latent state Latent state Latent state

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Abruzzo 0.47 0.20 0.13 0.13 0.07 0.36 0.09 0.36 0.09 0.09 0.00 0.18 0.50 0.32 0.00
Basilicata 0.80 0.20 0.00 0.00 0.00 0.82 0.00 0.00 0.09 0.09 0.14 0.14 0.50 0.18 0.05
Calabria 0.93 0.07 0.00 0.00 0.00 0.82 0.18 0.00 0.00 0.00 0.14 0.09 0.41 0.32 0.05
Campania 0.47 0.33 0.13 0.07 0.00 0.27 0.27 0.09 0.27 0.09 0.00 0.09 0.18 0.32 0.41
Emilia-Romagna 0.07 0.07 0.27 0.40 0.20 0.18 0.36 0.00 0.36 0.09 0.00 0.18 0.32 0.50 0.00
Friuli Venezia Giulia 0.53 0.47 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.05 0.23 0.50 0.23 0.00
Lazio 0.20 0.73 0.07 0.00 0.00 0.00 0.45 0.00 0.55 0.00 0.00 0.09 0.82 0.09 0.00
Liguria 0.00 0.00 0.13 0.13 0.73 0.09 0.09 0.55 0.18 0.09 0.00 0.00 0.45 0.18 0.36
Lombardia 0.00 0.00 0.00 0.00 1.00 0.00 0.09 0.36 0.09 0.45 0.00 0.14 0.41 0.23 0.23
Marche 0.27 0.27 0.00 0.00 0.47 0.64 0.18 0.09 0.09 0.00 0.00 0.09 0.32 0.45 0.14
Molise 0.53 0.00 0.00 0.40 0.07 0.73 0.00 0.09 0.00 0.18 0.09 0.18 0.36 0.36 0.00
P. A. Bolzano 0.47 0.27 0.20 0.00 0.07 0.64 0.18 0.00 0.18 0.00 0.00 0.14 0.27 0.45 0.14
P. A. Trento 0.27 0.13 0.07 0.53 0.00 0.91 0.00 0.00 0.00 0.09 0.05 0.27 0.50 0.09 0.09
Piemonte 0.00 0.00 0.13 0.27 0.60 0.00 0.18 0.55 0.27 0.00 0.00 0.00 0.32 0.45 0.23
Puglia 0.20 0.60 0.20 0.00 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.00 0.14 0.64 0.23
Sardegna 0.53 0.33 0.13 0.00 0.00 0.64 0.18 0.09 0.00 0.09 0.00 0.00 0.36 0.45 0.18
Sicilia 0.67 0.33 0.00 0.00 0.00 0.45 0.36 0.09 0.00 0.09 0.00 0.00 0.18 0.73 0.09
Toscana 0.33 0.47 0.20 0.00 0.00 0.73 0.18 0.09 0.00 0.00 0.00 0.41 0.32 0.27 0.00
Umbria 0.67 0.13 0.13 0.00 0.07 0.91 0.00 0.09 0.00 0.00 0.00 0.32 0.45 0.23 0.00
Valle d’Aosta 0.33 0.07 0.27 0.00 0.33 0.45 0.09 0.27 0.00 0.18 0.00 0.05 0.32 0.32 0.32
Veneto 0.53 0.47 0.00 0.00 0.00 0.45 0.55 0.00 0.00 0.00 0.00 0.27 0.18 0.09 0.45

level is in agreement with the data description in Section 4.1. Many regions are never or very rarely
assigned to the last latent state whereas other regions, such as Liguria and Lombardia, are frequently
assigned to this state and at the same time are rarely assigned to the latent state corresponding to
the lowest risk. Regions that are assigned to the last state at least 10% of times (about equal to
the national average) are in the North of Italy, with the exception of Marche and Campania. On
the contrary, regions that are assigned at least 40% of times (corresponding about to the national
average) to the first state are in the Center and South, with the exception of Friuli Venezia Giulia,
Veneto, and Trentino provinces.

The temporal pattern in Fig. 4 is also of interest, and can be compared with the observed patterns
n Figs. 1 and 2. There are regions that started in an unfavorable situation, namely in the last latent
tate, and then improved much towards the end of the period of observation, such as Lombardia and
iguria. Other regions have an opposite trend, with a clear worsening of the situation across time,
uch as Veneto and Friuli Venezia Giulia. More mixed trends are typically observed for regions in
he Center and the South of Italy. For instance, Toscana and Umbria moved towards states of greater
everity in an intermediate period, but then saw a decreased incidence. This is especially true for
oscana, after the end of a localized lockdown that lasted few weeks.
Finally, in order to illustrate the spatial patterns in terms of predicted latent states, in Table 7 we

eport a measure of agreement between the state predicted for each region and the states predicted
or its neighbors. This index is obtained by counting, for each week, the number of neighbors having
predicted state equal to that of the region. Once collapsed over the time occasions, this count

s divided by the number of weeks and that of neighbors. We also include the same agreement
ndex computed across macroregions. The average of the agreement measure at Italian level is
.361, which compares with a theoretical value of 0.2 in case of absence of spatial dependence,
eing k = 5 the number of latent states. In this regard there is a certain heterogeneity, with some
egions showing a strong spatial dependence, such as Calabria, and others showing a weaker spatial
ependence, such as Emilia-Romagna. Even when we aggregate the index at a macroregional level
t can be noted that northern regions show a larger spatial dependence than Center and South. We
peculate that strong spatial dependence could be due to ongoing pendolarism across regions even
uring lockdown periods, where people were indeed allowed to move across regions for work. Note,
12
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Fig. 4. Heatmap of the predicted latent state for each region at each week. Darker is associated with worse predicted
risk.

however, that strength of spatial dependence might be influenced by the size of the neighborhood
even if we divide this simple index by the number of neighbors. Overall, spatial dependence is far
from irrelevant and it should then be appropriately modeled when analyzing the data at hand. This
conclusion is also in agreement with what already noted in Section 4.1 on the basis of the results
in Table 2.

5. Discussion

We propose a spatio-temporal approach for the analysis of weekly COVID-19 data, in which the
umber of swabs is used as an offset. Conditionally on a discrete latent variable, incident cases are
ssumed to follow a Poisson distribution modulated by a common trend, which is flexibly estimated
sing a spline model on the log-scale, and a multiplicative shock that depends on the latent state.
atent states evolve over time according to an inhomogeneous first-order Markov chain, so that
reas can move from one level of risk to another. Levels of risk are therefore not absolute, but
efined as proportional variations with respect to the common trend. Finally, spatial dependence
s taken into account through the latent state, which depends on the state of neighboring areas at
he same time occasion.

In contrast to other works using splines to approximate the emission densities (e.g., Langrock
t al. (2015)), in this work we have specified them to describe a non-linear relationship between
xpected counts and time, in the spirit of Langrock et al. (2017). For ease of computation we have
pproximated the conditional distribution of the latent states through a pseudo-probability. This is
13
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Table 7
Agreement between the state assigned to a certain region and to its
neighbors.
Region N. neighbors Agreement

Abruzzo 3 0.326
Basilicata 3 0.482
Calabria 2 0.617
Campania 4 0.362
Emilia-Romagna 6 0.206
Friuli Venezia Giulia 1 0.574
Lazio 6 0.305
Liguria 3 0.213
Lombardia 5 0.255
Marche 5 0.306
Molise 4 0.372
P. A. Bolzano 3 0.355
P. A. Trento 3 0.234
Piemonte 4 0.351
Puglia 3 0.340
Sardegna 0 –
Sicilia 1 0.553
Toscana 5 0.311
Umbria 3 0.433
Valle d’Aosta 1 0.298
Veneto 5 0.332

North 3 0.134
Center 5 0.085
South 2 0.108

Italy 3 0.361

not uncommon in spatial statistics, and an excellent fit is obtained, even if some care might have to
be used in interpreting parameters linked to the latent distribution. Readers are pointed to Friel and
Pettitt (2004), Friel et al. (2009) and Everitt (2012) for further discussion on this point, and to Spezia
et al. (2017) and references therein for other examples in spatial statistics. An alternative to this
approximation would have been to use a nested sampling algorithm, according to which p(U |Γ,∆)
s approximated at each MCMC iteration. This more rigorous approach would have been problematic
rom a computational point of view, as approximating the correctly specified full conditional for U
ould have implied a full-length MCMC algorithm within each outer MCMC iteration.
We have used the logarithm of the number of swabs as an offset in order to partially overcome

ias due to the unknown and spatio-temporal heterogeneous sampling ratio. Our analysis, combined
ith weekly aggregation, gives a somehow robust assessment of five risk profiles and a common
rend.

In our implementation we have defined a spatial structure that depends on sharing a land
order. This is reasonable, but results should be interpreted considering this choice. Other choices
re possible, such as defining a spatial structure on the basis of direct train or flight connections
s in Della Rossa et al. (2020). While adopting a different spatial structure would probably lead
o slightly different results regarding the distribution of latent states, we are confident that as
ong as enough and appropriate connections are specified, the goodness-of-fit and qualitative
onclusions would be similar. The advantage of using our spatial structure is that it promotes similar
atent states in adjacent regions, allowing authorities to act homogeneously in neighboring areas
e.g., specifying a policy for all regions in the north-east of Italy rather than for regions that are well
onnected from an economic and social point of view, but far apart from each other).
We leave to further work the derivation of a formal method for obtaining a posterior distribution

n the number of latent states. One could also extend the model in order to allow for a time-
arying number of latent states, as in Anderson et al. (2019), thus obtaining a different number
f risk profiles at different times. Other possible extensions of our model involve use of more
lexible parametric assumptions for the counts, for instance a negative Binomial, which would take
14
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into account residual overdispersion, and extension to multivariate outcomes (e.g., a joint model
for incident cases, hospital admissions, and deaths). While this would be straightforward using
conditional independence assumptions (e.g., Bartolucci and Farcomeni, 2009, 2015; Farcomeni et al.,
2021b), in our case the outcomes would have constraints that it is not straightforward to take into
account. For instance, the (cumulative) number of deaths clearly cannot exceed the cumulative
number of incident cases, and similarly for hospital admissions. Current assumptions, also, allow
us to identify additive unobserved effects with respect to a common trend, essentially resulting in
a multiplicative shift of the same. Much more care would be needed to identify a different trend
for each latent state. Another possible extension would be the use of covariates at site level, which
would allow us for instance to catch cyclic weekly effects (if modeling daily counts). Covariates at
site level might also include indicators of interventions (like lockdowns, curfews, school closures),
but interpretation of effects would require a lot of care due to endogeneity.

Finally, we believe the methodological device we put forward in this work is not only useful for
nalysis of COVID-19 data, but it can be applied with minor changes also in other areas of disease
apping. In applications of the latent Markov framework, indeed, spatial dependence might often
e present and is generally ignored (e.g., Dotto et al., 2019).
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