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Abstract
We propose a general approach to detect measurement non-invariance in
latent Markov models for longitudinal data. We define different notions of
differential item functioning in the context of panel data. We then present a
model selection approach based on the Bayesian Information Criterion (BIC)
to choose both the number of latent states and the measurement structure.
We show the practical relevance by means of an extensive simulation study,
and an empirical application of tolerance types toward minorities. Our re-
sults indicate that BIC is able to select the correct measurement equivalence
structure more than 95% of times.
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1 Introduction

Central assumptions in psychological, social and economic evaluations are that all
items in a questionnaire have the same discrimination power (i.e. they are equally related
to the latent trait), unidimensionality of the latent trait, and measurement equivalence - or
invariance - of the scale.

In this work we focus on evaluations that are repeated over time, using the same items,
for the same agents (subjects, households, etc.). The resulting longitudinal or panel data
are usually treated by specifying agent-specific random effects, which capture dependence
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and unobserved heterogeneity. Incidentally, random effects describe the latent trait, also
known as the person-specific ability (De Andrade & Tavares, 2005).

Our main focus is on assessment of measurement invariance. This happens when
indicators of the measurement model do not depend on covariate values, regardless of effects
for the latent variable. This means that the latent trait, given the covariates, fully explains
the observable behaviour of a subject. Intuitively, e.g., propensity to tolerance changes with
a covariate (e.g., age); but conditionally on the covariate the meaning of an item is the same
at all ages.

Violations of the measurement invariance assumption can distort the interpretation
of the latent scale. In latent class models, how to detect measurement invariance and
evaluating the effects of failing to ignore the presence of direct effects of the covariates on
the indicators has been largely studied in recent literature (Bakk & Kuha, 2020; Vermunt
& Magidson, 2020; Janssen et al., 2019).

Such violations are sometimes termed differential item functiong (DIF), since some
items have differing conditional response probabilities given the covariate values. For in-
stance, if measurement invariance is violated when comparing household portfolio proto-
types across countries or regions, differences in product acquisitions might be due either to
substantive differences or as differing behaviors over countries.

We describe below how a flexible model specification can be naturally used, condition-
ally on unidimensionality assumptions, to allow person-specific abilities to change over time,
and, more importantly, to assess measurement invariance. We work with a generalization of
the latent class model (Goodman, 1974) known as the latent Markov (LM) model (Collins
& Wugalter, 1992; Van de Pol & De Leeuw, 1986; Van de Pol & Langeheine, 1990; Wiggins,
1973; Bartolucci et al., 2013), also referred to as hidden Markov or latent transition model.
LM models describe how individuals move between latent states over time, accounting for
measurement error (see, for instance, Van de Pol & De Leeuw, 1986). Examples in the
social and behavioral sciences of the use of LM models include estimating the change in
brand choice behavior over time (Poulsen, 1990), modeling disease progression (Jackson et
al., 2003), analyzing the behavior of domestic violence batterers (Ip et al., 2010), public
trust (Pennoni & Genge, 2020), measuring dynamics in households’ portfolio composition
(Di Mari et al., 2016; Paas et al., 2007) as well as their material deprivation (Dotto et al.,
2019; Farcomeni et al., 2020).

In many applications of LM models researchers investigate possible predictors and
correlates of the latent state membership. One well-known extension of the baseline LM
model is obtained by including time-constant and/or time-varying covariates explaining dif-
ferences in initial states and transitions across individuals and/or time points (Bartolucci
& Farcomeni, 2009; Bartolucci et al., 2013, 2014; Collins & Lanza, 2010; Farcomeni, 2015;
Vermunt et al., 1999). Further extensions include, for instance, dynamic latent class mod-
els (Asparouhov et al., 2017), mixed hidden Markov (Altman, 2007; Maruotti, 2011) and
multilevel latent Markov models (Montanari et al., 2018; Bartolucci et al., 2011).

It is typical for LM models to assume the existence of a latent process following
a first–order Markov chain with a finite number of states which affects the distribution
of the response variables - measurement model. Although important, the measurement
model is often not of primary interest in applied research. The researcher might rather be
interested in questions like how the unobserved portfolio prototype of a household relates
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to the amount of hours worked per week or the country or region of residence, or whether a
specific unobserved disease progression state can be predicted by the smoking status. There
are two main advantages for our purposes in the use of latent transition models: first of all,
finite mixtures can adapt very well to almost any underlying latent trait distribution, thus
reducing bias due to misspecification of the random effects distribution. Secondly, posterior
probabilities can be used to cluster subjects and evaluate their transitions over repeated
questionnaire administrations.

The issue of measurement non-invariance is pervasive in latent variable models (Vriens
et al., 2017, Muthén & Asparouhov, 2018, Munck et al., 2018, Kankaraš et al., 2011, Davidov
et al., 2018 and Cieciuch et al., 2018). See also Vermunt (2010); Asparouhov & Muthén
(2014); Kim et al. (2016); Nylund-Gibson & Masyn (2016) about bias due to ignoring
the direct effects. In the latent Markov literature, Di Mari & Bakk (2018) investigate the
rubustness of currently available approaches in the presence of direct effects of the covariates
on the indicators, but they do not deal with locating scale (or item) level misspecification.
More recent contributions include the works of Vogelsmeier et al. (2019) and Vogelsmeier
et al. (2020), for tracking and diagnosing measurement non-invariance in latent Markov
models for intensive longitudinal data, for continuous and ordinal responses respectively.
How to detect measurement non-invariance for categorical data remains an open issue.

In this work we will define several new notions of DIF in the panel data context. In or-
der to detect lack of measurement invariance, and select the most appropriate DIF scenario,
we propose simply comparing the different options through the Bayesian Information Crite-
rion (BIC). BIC has advantages over traditional hypothesis-testing tools (Lorah & Womack,
2019). For instance, the ability to compare non-nested models (McCoach & Black, 2008),
or to make selection among several competing models (Raftery, 1995); perhaps, more in
general, it allows to “show that a smaller model is better than a larger model” (Weakliem,
2004, p. 179). For these reasons, researchers tend to prefer to report BIC in order to guard
against some of the weaknesses of hypothesis-testing procedures, like arbitrary selection of
p-values or an increased Type I error rate when multiple models are presented for explaining
variation in a data set (Lorah & Womack, 2019; Cohen, 1992). Finally and importantly,
BIC is model consistent: if the true model (that is, invariance or non-invariance structure)
is among the set of candidates, as the sample size grows it will be selected with probability
one (Yang, 2005).

To help detecting local misspecifications, local fit measures have been proposed for
latent class and latent class multilevel models (Nagelkerke et al., 2016, 2017; Magidson
& Vermunt, 2004) based on Pearson residuals - available also to LM models (Vermunt
& Magidson, 2016) - and a measure based on the Expected Parameter Change (EPC,
Oberski, 2014; Oberski & Vermunt, 2018). Still, the issue of detecting measurement non-
invariance is not yet resolved: the above local fit measures are not asymptotically chi squared
and, for statistical conclusions, correct p-values are to be obtained based on resampling
procedures (Oberski et al., 2013), whereas the EPC is not yet available for Markov models.
Moreover, recommendations on how to select the model at scale level and power assessment
of global fit measures are not available - that is, regarding possible restrictions on the kind
of differential item functioning that is imposed simultaneously on all items. Although such
local fit measures are gaining attention for differential item functioning detection at local
(item) level, they require a prior idea on the scale-level model.
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In this paper, we propose a principled and logical approach for detecting potential
sources of DIF with different levels of severity, to allow applied researchers to avoid model
misspecifications in longitudinal studies and get accurate estimates accounting for possible
measurement non-invariance - without necessarily having to resort to overparametrized
models.

To do so, we combine and extend ideas from Kankaraš et al. (2010) and Masyn (2017)
to latent Markov models for longitudinal data. We start by expanding the parametrization
of the measurement model of Kankaraš et al. (2010) to allow time- state-varying DIF, and
all parametrization instances are nested in the overparametrized specification. We then
develop a procedure to evaluate (approximate) measurement invariance at scale level based
on BIC, which we assess by means of an extensive simulation study and an application
on tolerance types toward minorities. Results point out that BIC allows to choose the
correct model in most of the cases (more than 95% of times) and, as a consequence, precise
estimates, regardless of the type of underlying DIF and intra class separation, are provided.
The main take-home message is that misspecification of the measurement model causes
non-negligible bias on structural model parameters: hence prior model selection at scale
level is mandatory.

The paper is structured as follows. In Section 2 we introduce the modeling framework,
and discuss the estimation strategy in Section 3. In Section 4 we report the results from
the simulation study, and then present an empirical application on tolerance types toward
minorities from the General Social Survey (Section 5). Section 6 concludes.

2 The latent Markov model with covariates

Let Yith, h = 1, . . . ,H, denote the h-th dichotomous indicator measured for the
i-th subject, i = 1, . . . , n, at time t, t = 1, . . . , T . Let additionally Xit denote a time-
specific vector of covariates which have to be assessed for measurement invariance. Assume
furthermore that there is a discrete latent variable Uit with support {1, . . . ,K}. In the
following we make assumptions of local independence (that is, that conditionally on Uit

and possibly covariates, Yith is independent of Yisl for h, l = 1, . . . ,H when s 6= t, and for
all l 6= h when t = s) and that Uit follows a possibly inhomogeneous first-order Markov
chain (that is, conditionally on Ui,t−1 and possibly covariates, Uit is independent of Uis for
s < t− 1).

Let logit(x) = log [x/(1− x)], and denote φh|k = Pr(Yith = 1|Uit = k). In case of
measurement invariance (no DIF), we assume the data arise from the following model:

P (Yit1 = y1, . . . , YitH = yH | Uit = k) =
H∏

h=1
φyh

h|k(1− φh|k)1−yh

log
[
P (Ui1 = k | Xi1)
P (Ui1 = 1 | Xi1)

]
= α1k + β1kXi1

log
[
P (Uit = k | Ui,t−1 = j,Xit)
P (Uit = j | Ui,t−1 = j,Xit)

]
= αtkj + βtkjXit,

(1)

where the first equation assumes a time-homogeneous measurement model, the second equa-
tion is for k 6= 1 and t = 1, while the last equation is repeated for all k 6= j and all t > 1.
The first equation in (1) defines the measurement model, while the remaining equations
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define the structural model. In addition, we let δi be the K initial state probabilities with
generic element δik = P (Ui1 = k | Xi1), and Qit the transition probability matrix with
generic element qitkj = P (Uit = k | Ui,t−1 = j,Xit).

Note that we specified a model with several parameters, which in many cases can
be simplified by assuming uniformity for the latent distribution, that is, αtkj = αlkj and
βtkj = βlkj for all t > 1 and l > 1. This assumption can be incorporated in the notation by
dropping the subscript t from the structural model parameters. Thus, the number of free
parameters to be estimated is HK + 2(K − 1) + 2[K(K − 1)].

It is possible to relax the measurement invariance assumption by allowing for DIF.
With reference to the generic h-th item, we can distinguish the following DIF scenarios.
In case of an all-DIF model, the first equation of (1) is modified by letting the conditional
probabilities depend on Xit and parameterizing

logit(φht|k) = γhk + ηhtkXit (2)

for all h = 1, . . . ,H and t = 1, . . . , T . This corresponds to the nonuniform (full) DIF model
in which the effect of the covariate is state- and time- dependent. In this case, the number
of free parameters to be estimated is increased by HTK with respect to that of (1). Note
that, by allowing a time-varying effect of the covariate on the items, we are relaxing the
homogeneity assumption of the measurement model.

The other DIF scenarios can be derived from the full DIF case by imposing suitable
restrictions, as shown in Figure 1. The strongest restriction is obtained by assuming the
effect of the covariate on the h-th item to be state- and time- independent. The equation
for the state-conditional response probabilities becomes

logit(φh|k) = γhk + ηh··Xit. (3)

Measurement invariance for item h is obtained, as a special case, when ηh·· = 0. Two
intermediate DIF conditions can be allowed for by specifying either time-constant or state-
constant DIF, respectively

logit(φht|k) = γhk + ηh·kXit (4)

in the first case, and
logit(φht|k) = γhk + ηht·Xit (5)

in the second case.

3 Differential Item Functioning: a scale-level estimation strategy

In this section we describe in details the procedure to select the most plausible scale-
level DIF specification. We start with ML estimation of the model parameters of the most
general (full DIF) specification, from which all other nested specifications we discussed
above can be derived straightforwardly (refer to Figure 1). Then we describe how a sensible
initialization for computing ML estimates can be achieved, and how to classify sample units
into states based on known recursions. Note that to denote the generic value assumed by
Uit, we will use k and kit interchangeably.
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Figure 1 . Hierarchy of relationships between models for the generic h-th item.

3.1 Maximum likelihood estimation

The joint distribution of the full response vector Y i for unit i in case of full DIF can
be written as

P (Y i|Xi) =
K∑

ki1=1
. . .

K∑
kiT =1

P (Ui1 = ki1|Xi1)
T∏

t=2
P (Uit = kit|Ui,t−1 = ki,t−1, Xit)

T∏
t=1

P (Y it|Xit, Uit = kit),

(6)
where kit denotes one of the possible latent states for unit i at time t, i = 1, . . . , n and
t = 1, . . . , T . By letting θFULL be the vector of all model parameters for the full DIF model,
parameter estimation is normally carried out by maximizing the sample log-likelihood func-
tion

`(θFULL) =
n∑

i=1
logP (Y i |Xi) (7)

with respect to θFULL. This is typically accomplished either by iterative algorithms like the
EM-algorithm (Baum et al., 1970 and Dempster et al., 1977), or by direct maximization.
Here we illustrate how to find ML estimates of θFULL by direct maximization. To do so, we
will exploit a well known recursion (Baum et al., 1970) that allows to compute the (log)-
likelihood quite efficiently (see also Bartolucci et al., 2013 and Zucchini et al., 2016), which
we will directly maximize to find the vector of unknown model parameters.

Let us introduce the so-called forward probabilities

ait(k) = P (Y i1, . . . ,Y it, Uit = kit | Xi1, . . . , Xit), (8)
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that can be seen as the probability of observing a partial sequence ending up in state kit at
time t for unit i. This quantity can be computed recursively as

ai1(k) = δikP (Y i1 | Ui1 = k,Xi1), (9)

and

ait(k) =
K∑

m=1
ai,t−1(m)qitkmP (Y it | Xit, Uit = k). (10)

The log-likelihood can then be computed as (Zucchini et al., 2016)

`(θFULL) =
n∑

i=1
log

K∑
m=1

aiT (m) . (11)

Note that the recursions of Equations (9), (10) and (11) can be performed under
the model assumption (Sec. 2). In addition note that formulas (8)-(11) can be adapted
straightforwardly to accommodate any of the constrained specifications presented above.
Inference on the model parameters, under each specification, can be done using the observed
information matrix estimated from the inverse of minus the (numerical) Hessian.

3.2 Initialization of the model parameters

Numerical solvers usually require starting values for the model parameters. We sug-
gest a hierarchical initialization strategy that provides a warm start for subsequent model
fitting. The strategy works as follows.

1. Fit a simple latent class model (without covariates) on the pooled data. Use the
response probabilities to initialize φh|k for all h = 1, . . . ,H and k = 1, . . . ,K.

2. Use posterior class membership probabilities from the simple latent class model to
classify units with a maximum a posteriori rule and take such values as if they were
realizations of an observed (not latent) Markov process and compute the initial and
transition probabilities.

3. (Simple LM model) Use the log-linear transformation to map the probabilities from
the previous step into intercept-only log-linear models: these are used to initialize α1k

and αkj , for all k, j = 1, . . . ,K. Set β1k and βkj to zero, for all k, j = 1, . . . ,K.

4. Fit the no DIF LM model. Use the model parameter estimates to fit all other DIF
configurations - with ηhtk parameters initialized to zero.

3.3 Classification with posterior membership probabilities

To classify observations within states by means of posterior membership probabilities,
we introduce the so-called backward probabilities

bit(k) = P (Y i,t+1, . . . ,Y i,T | Uit = kit, Xi1, . . . , Xi,t+1). (12)
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In words, bit(k) indicates the probability, given state membership at time t, to observe
(Y i,t+1, . . . ,Y i,T ). These probabilities can be computed, similarly to the forward probabil-
ities, recursively as follows

bit(k) =
K∑

m=1
qi,t+1,mkP (Y i,t+1 | Xi,t+1, Ui,t+1 = m)bi,t+1(m), (13)

with
biT (k) = 1, (14)

for k = 1, . . . ,K.
At time t, posterior membership probabilities for unit i can be computed as

P (Uit = k | Y i,Xi) = ait(k)bit(k)
K∑

m=1
ait(m)bit(m)

. (15)

3.4 Model selection

3.4.1 Number of latent states. The first choice to be made concerns the num-
ber of states (K). Typically, to do so, information criteria like AIC or BIC are used.
However, although using these criteria is common practice, their performance has not been
studied enough in detail - especially in connection with LM models (Bartolucci et al.,
2013). The current best practice in latent class analysis (LCA) is to select the number
of states based on unconditional models - i.e. without covariates (Asparouhov & Muthén,
2014, Masyn, 2017 and Vermunt, 2010).

Based on available recommendations for LCA, to avoid selecting a number of states
larger than optimal - due to, for instance, misspecifications like unmodelled local dependen-
cies and DIF - we also suggest selecting K based on a LM model without covariates. The
unconditional model can be fitted using the same initialization strategy of Section 3.2 for
an increasing number of states. Then, the optimal K is selected minimizing BIC.

3.4.2 Specification of DIF structure. The next step of model selection involves
choosing the DIF specification. For a given K, we propose to fit a LM model with covariates
with no DIF, and DIF as specified in Figure 1 - see also Equations (2), (3), (4) and (5).
The model that is then selected is the one minimizing BIC.

From the point of view of interpreting the model, the two most interesting config-
urations are the no DIF and the time- and state- constant DIF. By contrast, a full DIF
model, i.e. with time and state varying DIF, is selected if the latent structure is not enough
to describe the association between items and between items and covariate(s). In this case,
the resulting overall model is hardly interpretable.

4 Simulation Study

The aim of this simulation study is twofold: first, we show the potentially dangerous
consequences of ignoring the direct effect(s) of covariate(s) on the measurement model and
investigate the benefits of selecting the proper DIF model in terms of the precision of
parameter estimates and classification output. Second, we evaluate how effective is BIC
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in detecting the best model in terms of the most suitable scale-level DIF specification. In
order to provide a clear picture of the importance of detecting measurement non-invariance
in latent Markov models for longitudinal data and give clear guidelines to applied users, we
run an extensive simulation study considering the following target measures: absolute bias,
relative mean squared error and standard errors of the structural parameter estimates. As
the number of the parameters involved is quite large, we adopt a more compact notation.
When we mention the parameters α and β, we are referring to all the parameters α1k and
β1k, i.e. those at time t = 1. Similarly, for t > 1, we use the notation α1 and β1 for the
parameters αtk and βtkj respectively.

The simulation design is structured as follows. In each scenario we generate n = 500
observations, observed in T = 4 time occasions on which H = 10 dichotomous items are
measured. The observations are divided in K = 3 latent states whose separation depends
on a “separation parameter”, namely sep, that is set equal to 0.9, 0.8 and 0.7. This is used
for calibrating intra class separation as γhk = log(sep/(1−sep)), where γhk represents, as in
equations (2),(3), (4) and (5), the intercept of the linear model linking the logit of the item
specific probabilities with the covariates available. Trivially, the higher is sep, the higher
is the intra class separation. Finally we generate for simplicity a single numerical covariate
from a standard Gaussian distribution. The five DIF scenarios are described below.

1. No DIF. The covariate only affects transition probabilities but it does not affect item
specific probabilities. This is labelled as DIF 0.

2. Full DIF. The covariate affects both the transition probabilities and the item specific
probabilities. In particular, the ηhtk parameters vary across items, time and class.
This is labelled as DIF 1.

3. Time-Constant DIF. The ηhtk parameters vary across items and class but remain fixed
across time. This is labelled as DIF 2.

4. State-Constant DIF. The ηhtk parameters vary across time and item but remain fixed
across latent states. This is labeled as DIF 3.

5. State- and Time- constant DIF. The ηhtk parameters are fixed across time and latent
states. This is labelled as DIF 4.

By combining all the parameters listed above we obtain 15 different scenarios and generate
the data 500 times in each scenario. The following competing approaches are compared in
our simulation study.

1. Simultaneous estimator simply neglecting DIF: the covariate only affects initial and
transition probabilities and has no direct effect on items (labelled as “No DIF”).

2. Two-Step estimator (labelled as “Two–Step”): No DIF model estimated by following
the two step procedure proposed in Di Mari & Bakk (2018)

3. The LM model selected by the BIC (labelled as “S.L.M.”).

Figure 2 summarizes the results and reports parameters’ absolute bias, relative mean
squared errors and standard errors (computed based on the numeric Hessian). The selected
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Figure 2 . Absolute bias, Relative Mean Squared Error and Standard Error of the structural
parameter estimates
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model provides precise estimates of all the structural parameters while the two competing
approaches provide severely biased parameter estimates in most of the scenarios. We also
point out that, even if model selection may lead to use more complex model specifications,
the associated standard errors are lower than the ones provided by possibly simpler models
(see the third column of Figure 2). To show the impact of measurement non invariance
on parameter estimates we report, in Figure 3, the value of the relative mean squared
error of all the parameters as the type of DIF imposed varies. In absence of measurement
invariance, as expected, all the procedures provide precise estimates, while, as differential
item is imposed, standard approaches completely fail. On the contrary, the selected model
provides estimates that are very accurate regardless of the type of underlying DIF. Even
in the most complicate situation, the one in which the covariate affects both transition
probabilities and item specific probabilities (Full DIF scenario- second panel of Figure 3) the
parameters estimates show very low values in terms of relative mean squared error. Similarly
as done with different type of DIF, we report, in Figure 4, the relative mean squared error of
the parameter estimates as the intra class separation decreases. The selected model seems to
be able to provide precise estimates regardless of the separation between the latent classes.
On the contrary, even when the classes are well separated, the “No DIF” and the “Two-Step”
models’ estimates look severely biased (and clearly the performances get worse and worse
as the separation decreases). Finally, we observe that the usage of the BIC leads to select
the proper model in most of the cases with probability very close to one - see the confusion
matrix in Table 1. Furthermore, the full DIF case, probably the most problematic and least
interpretable situation for applied researchers and practitioners, is detected with probability
1. Another interesting aspect regards state prediction. To measure the performances of in
terms of state prediction - which is a classification task - we compute the Adjusted Rand
Index (ARI, Hubert & Arabie, 1985) between the estimated latent class membership and
the true classification labels. Table 2 reports the average ARI in each scenario for each of
the procedures compared and confirms that in all of the proposed scenarios the selected
model completely outperforms the other methods regardless of the type of DIF and the
level of separation among the latent classes.

In conclusion, results from this extensive simulation study point out that the pro-
posed model selection strategy is effective for choosing the scale level DIF specification,
guaranteeing correct parameter estimates and model interpretability.
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Figure 3 . Relative Mean Squared Error as the DIF scenario varies
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Figure 4 . Relative Mean Squared Error as the intra-class separation varies

True Model
No
Dif

Full
Dif

Time Constant
Dif

State Constant
Dif

State Time
Constant Dif

BIC

No Dif 1.00 0.00 0.01 0.00 0.00
Full DIF 0.00 1.00 0.00 0.00 0.00

Time constant DIF 0.00 0.00 0.99 0.00 0.00
State constant DIF 0.00 0.00 0.00 1.00 0.00

State and Time constant DIF 0.00 0.00 0.00 0.00 1.00
Table 1
Confusion matrix normalized by column to evaluate the BIC performance.
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Table 2
Average Adjusted Rand Index of the classification in each scenario

No DIF Two-Step S.L.M Dif Sep
0.96 0.95 0.96 0 0.9
0.43 0.43 0.94 1 0.9
0.96 0.95 0.98 2 0.9
0.86 0.86 0.98 3 0.9
0.92 0.92 0.96 4 0.9
0.92 0.92 0.92 0 0.8
0.18 0.18 0.73 1 0.8
0.79 0.79 0.93 2 0.8
0.61 0.61 0.93 3 0.8
0.75 0.75 0.93 4 0.8
0.87 0.86 0.88 0 0.7
0.24 0.24 0.68 1 0.7
0.66 0.68 0.90 2 0.7
0.49 0.50 0.85 3 0.7
0.62 0.63 0.86 4 0.7

5 Measuring tolerance towards minorities

The data are taken from the American General Social Survey (GSS), which is a
nationally representative survey of the English-speaking, non-institutionalized adult popu-
lation of the United States. We analyze a similar set of items as in McCutcheon (1985),
who showed how age and education groups differ with respect to their tolerance toward
minorities on data taken from the 1976 and 1977 GSS samples. The original set of items
used by McCutcheon measured whether the respondents would allow members of different
out-groups to speak in a public space. The items are formulated as follows: “Suppose this
. . . wanted to make a speech in your community. Should he be allowed to speak?” with
response options “(Yes/No)” and are referred to communists, atheists, militarists, homo-
sexuals, and racists. Newer versions of the survey include an additional item measuring
tolerance towards Muslims. We used data from the panel version of the same survey, from
the years 2010, 2012 and 2014 (T = 3), that are openly available1. We select sample units
that were observed for all 3 waves, yielding a sample size n = 697.

We consider the extended set of items (H = 6), and focus on the effect of education
and cohort separately on tolerance types. The same data set has been analyzed also in
Di Mari & Bakk (2018). To make sure results are comparable with previous literature, we
set the number of latent states to 3. Consistently with the rest of the paper, a time-invariant
specification for the parameters of the transition probabilities is adopted.

As in McCutcheon (1985), we re-coded Education into three categories - less than
grade 12 (1), completed high school (2) and higher educated (3). Cohort instead was coded
into four categories: young (18-24 years old, coded as 1), young adults (25-42 years old,
coded as 2), middle age (43-61 years old, coded as 3) and old (62 years and older, coded
as 4). To avoid parameter proliferation, both covariates are taken as numeric in all model

1https://gss.norc.org/

https://gss.norc.org/
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equations. Following the setup of the simulation study, we fit DIF 0 to DIF 4 LM models,
and the no DIF (DIF 0) model with the two–step estimator.

5.1 Education

Table 3 presents overall model statistics for each DIF type (simultaneous estimator).
The lowest BIC is attained at time- and state- constant DIF (DIF 4). Interestingly, the
direct effect of Education on items (Table 4) shows that a higher education corresponds
on average to a higher probability to allow “Atheists”, “Communists”, “Homosexuals”,
“Militarists”, and “Muslims” to speak in public. The effect of Education on the fifth item
(allow “Racists” to speak in public) is not significant. For this reason, in what follows we
will consider also the DIF 4 model with no DIF on item 5 - “DIF 4 (-)” henceforth. This
configuration turns out to have the lowest BIC (8935.36, with 39 parameters and an entropy
R2 of 0.79).

BIC # par entr. R2

No DIF (DIF 0) 8973.67 34 0.81
Full DIF (DIF 1) 9198.68 88 0.80
Time-constant DIF (DIF 2) 8997.86 52 0.84
State-constant DIF (DIF 3) 9008.30 52 0.83
Time- State- constant DIF (DIF 4) 8941.46 40 0.79

Table 3
BIC, number of parameters and entropy R2 for the simultaneous estimator of DIF 0 - DIF
4 models. DIF with respect to education.

time- state- constant DIF (DIF 4)
η1·· 0.76∗∗∗
(“Atheists”) (0.17)
η2·· 1.12∗∗∗
(“Communists”) (0.20)
η3·· 0.85∗∗∗
(“Homosexuals”) (0.15)
η4·· 0.39∗∗∗
(“Militarists”) (0.14)
η5·· 0.09
(“Racists”) (0.14)
η6·· 1.16∗∗∗
(“Muslims”) (0.23)

Table 4
Estimates of the direct effect of the covariate “Education” on the items according to the
time- state- constant DIF (DIF 4) - the best according to BIC. Standard errors in paren-
theses (based on the observed Information matrix). ∗∗∗ p-value<0.01, ∗∗ p-value<0.05, ∗
p-value<0.1

The item–class (tolerance) profiles averaged across covariate levels from the DIF 4
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Figure 5 . Response probabilities to answer “yes” given state membership. The covariate
Education is loaded on the state variable and has a time and state constant direct effect on
all indicators.

model are displayed in Figure 5. Overall, the tolerance type profiles are quite separated with
each other, naturally giving the latent states an ordinal interpretation. The “Tolerant” types
have a high probability of scoring “yes” on all items. For the “Middle” and the “Intolerant”
types, the probability of scoring “yes” on item 3 (allow “Homosexual” to speak in public) is
relatively higher than for other items, whereas the item with the lowest probability of scoring
“yes” is the sixth (allow “Muslims” to speak in public). More in general, the “Intolerant”
types have the lowest probabilities of scoring “yes” on all items compared to the other
tolerance types. “Middle” has an overall profile that is in between the “Intolerant” and the
“Tolerant” ones.

In Table 5 we display the overall transition probability matrix - averaged over sample
units and time. The “Intolerant” state has, on average, the highest persistence. We note
that “Intolerant” units have, on average, a probability of 0.25 to move to the “Middle” state
- with more tolerant positions towards minorities. In general transitions are more likely to
occur towards contiguous states.

Results for the structural model parameters, relating Education to state membership,
are reported in Table 6. We report, for comparison, results for the simultaneous estimator
for all 5 types of DIF and for the DIF 4 (time- state- constant DIF) with no DIF for item
5, and for the two–step estimator for the no DIF.

The signs of significant coefficients are in line, although we observe that the magni-
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State (t = 1):
“Tolerant” “Middle” “Intolerant”

0.48 0.31 0.21
State (t− 1):

“Tolerant” “Middle” “Intolerant”
State (t):
“Tolerant” 0.90 0.17 0.08
“Middle” 0.08 0.72 0.25
“Intolerant” 0.02 0.11 0.67

Table 5
Overall initial (on the top) and transition (on the bottom) probabilities, conditional on
Education, obtained averaging over sample units and time, for the simultaneous estimator
of the time- state- constant DIF (DIF 4) model. For the transition probabilities, past is on
the columns, present is on the rows.

tudes of the estimates for the fit of DIF 4 model are somewhat smaller in absolute value than
for the other DIF types. With higher level of education corresponds, on average, a higher
probability of starting in the “Tolerant” state. Those that are in state “Tolerant” have
lower probability to transition to the other states. Interestingly, higher levels of education
in general correspond to a lower probability to be/ to move to less tolerant states. In the
appendix we report also the average initial and transition probabilities for each Education
level.



DIF WITH LM 18

DIF 0 DIF 1 DIF 2 DIF 3 DIF 4 DIF 0 (2-step) DIF 4 (-)

Initial state
α1,2 1.74∗∗∗ 1.43∗∗∗ 1.57∗∗∗ 1.25∗∗ 1.31∗∗∗ 0.85∗ 1.35∗∗∗

(0.53) (0.51) (0.51) (0.48) (0.51) (0.45) (0.51)
α1,3 3.11∗∗∗ 1.71∗∗∗ 1.85∗∗∗ 1.51∗∗∗ 1.70∗∗∗ 1.24∗∗∗ 1.81∗∗∗

(0.47) (0.50) (0.51) (0.52) (0.53) (0.43) (0.48)
β1,2 -0.79∗∗∗ -0.72∗∗∗ -0.73∗∗∗ -0.64∗∗∗ -0.65∗∗∗ -0.97∗∗∗ -0.66∗∗∗

(0.19) (0.19) (0.19) (0.18) (0.19) (0.19) (0.19)
β1,3 -1.50∗∗∗ -0.97∗∗∗ -0.95∗∗∗ -0.91∗∗∗ -0.89∗∗∗ -1.31∗∗∗ -0.95∗∗∗

(0.18) (0.19) (0.19) (0.20) (0.20) (0.19) (0.18)

Transitions
α21 0.20 -0.62 -0.95 -0.54 -0.51 -4.72 -0.48

(0.77) (0.77) (0.94) (0.77) (0.82) (4.87) (0.82)
α31 -0.91 -0.65 -0.72 -0.44 -0.45 0.51 -0.52

(1.71) (1.18) (1.18) (1.05) (1.08) (0.53) (1.10)
α12 -0.55 -0.83 -1.02 -0.58 -0.66 -0.03 -0.69

(0.70) (0.74) (0.68) (0.73) (0.71) (0.69) (0.71)
α32 0.83 0.23 0.42 0.10 0.41 -1.19 0.48

(0.65) (0.62) (0.62) (0.70) (0.70) (1.47) (0.68)
α13 -4.62∗∗∗ -3.37∗∗∗ -3.29∗∗∗ -3.09∗∗∗ -3.05∗∗∗ -1.79∗∗ -3.14∗∗∗

(1.69) (1.22) (1.19) (1.03) (1.03) (0.71) (1.04)
α23 -0.97∗∗ -0.17 -0.26 -0.29 -0.36 -2.57∗∗ -0.39

(0.46) (0.52) (0.50) (0.55) (0.52) (1.14) (0.51)
β21 -0.96∗∗∗ -0.58∗∗ -0.57 -0.68∗∗ -0.76∗∗ -0.37 -0.76∗∗

(0.29) (0.29) (0.35) (0.30) (0.32) (1.79) (0.32)
β31 -1.35∗∗ -1.28∗∗ -1.26∗∗ -1.33∗∗∗ -1.36∗∗∗ -1.68∗∗∗ -1.34∗∗∗

(0.66) (0.51) (0.50) (0.46) (0.48) (0.26) (0.48)
β12 -0.31 -0.40 -0.18 -0.46 -0.32 -0.41 -0.31

(0.27) (0.33) (0.27) (0.31) (0.28) (0.31) (0.28)
β32 -1.12∗∗∗ -0.80∗∗∗ -0.98∗∗∗ -0.74∗∗ -0.97∗∗∗ -0.31 -1.00∗∗∗

(0.29) (0.29) (0.29) (0.31) (0.32) (0.62) (0.31)
β13 0.96 0.50 0.48 0.43 0.40 0.56∗ 0.43

(0.61) (0.45) (0.44) (0.39) (0.39) (0.33) (0.39)
β23 0.04 -0.42∗ -0.31 -0.38 -0.28 0.83∗ -0.27

(0.21) (0.24) (0.22) (0.25) (0.23) (0.50) (0.22)
Table 6
Structural model parameter estimates for no DIF (DIF 0), full DIF (DIF 1), time-constant
DIF (DIF 2), state-constant DIF (DIF 3), time- state- constant DIF (DIF 4), time- state-
constant DIF (DIF 4 (-)) with one no DIF item (“Racists”) and models with 3 latent states
and Education as covariate. The numbering of the states is 1=“Tolerant", 2=“Middle",
and 3=“Intolerant". The first state (“Tolerant”) is taken as reference for the initial state
multinomial regression, whereas the no-change state is taken as reference for the transition
probability multinomial regressions. Standard errors in parentheses (based on the inverse
hessian). ∗∗∗ p-value<0.01, ∗∗ p-value<0.05, ∗ p-value<0.1
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5.2 Cohort

Table 7 presents overall model statistics for each DIF type (simultaneous estimator).
The model with no DIF has the lowest BIC.

BIC # par entr. R2

No DIF (DIF 0) 9085.79 34 0.81
Full DIF (DIF 1) 9110.50 88 0.83
Time-constant DIF (DIF 2) 9162.68 52 0.83
State-constant DIF (DIF 3) 9319.95 52 0.82
Time- State- constant DIF (DIF 4) 9093.29 40 0.81

Table 7
BIC, number of parameters and entropy R2 for DIF 0 - DIF 4 models. DIF with respect to
cohort.

The item–class (tolerance) profiles are displayed in Figure 6. Overall, we observe
similar profiles as above: the tolerance type profiles are quite separated with each other.
Interestingly, the overall size of the “Tolerant” state is slightly larger compared to what
reported in the previous subsection - where Education has a direct effect on the items.

In Table 8 we display the overall transition probability matrix - averaged over sample
units and time. Also here, the “Intolerant” state has, on average, the highest persistence.
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Figure 6 . Response probabilities to answer “yes” given state membership. The covariate
Cohort is loaded on the state variable but has no direct effect on the indicators.
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We note that “Intolerant” units have, on average, a probability of 0.27 to move to the
“Middle” state - with more tolerant positions towards minorities - which is 2 percentage
points higher than in Table 8.

State (t = 1):
“Tolerant” “Middle” “Intolerant”

0.48 0.32 0.20
State (t− 1):

“Tolerant” “Middle” “Intolerant”
State(t):
“Tolerant” 0.91 0.17 0.06
“Middle” 0.08 0.71 0.27
“Intolerant” 0.01 0.12 0.67

Table 8
Overall initial (on the top) and transition (on the bottom) probabilities, conditional on
Cohort, obtained averaging over sample units and time, for the simultaneous estimator of
the time- state- constant DIF (DIF 4) model. For the transition probabilities, past is on the
columns, present is on the rows.

Results for the structural model parameters are displayed in Table 9. We note that,
the larger the cohort the lower on average the probability of moving from “Intolerant” to
“Tolerant” - this is the only effect that is significant in all DIF specifications and with both
simultaneous and two-step estimators.

In the appendix we report also the average initial and transition probabilities for each
Education level.
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DIF 0 DIF 1 DIF 2 DIF 3 DIF 4 DIF 0 (2-step)

Initial state
α12 -0.47 -1.11∗∗∗ -1.14∗∗∗ -0.78∗∗ -0.77∗∗ -0.67∗

(0.36) (0.40) (0.40) (0.36) (0.37) (0.34)
α13 -1.53∗∗∗ -1.31∗∗∗ -1.33∗∗∗ -1.75∗∗∗ -1.77∗∗∗ -2.20∗∗∗

(0.39) (0.41) (0.40) (0.45) (0.44) (0.46)
β12 0.04 0.23 0.29∗∗ 0.13 0.15 0.05

(0.13) (0.14) (0.14) (0.13) (0.13) (0.12)
β13 0.32∗∗ 0.22 0.27∗∗ 0.36∗∗ 0.40∗∗∗ 0.34∗∗

(0.13) (0.14) (0.14) (0.16) (0.15) (0.15)

Transitions
α21 -1.31∗ -2.00∗∗∗ -2.10∗∗ -1.49∗∗ -1.32∗ -1.89∗∗∗

(0.76) (0.74) (0.86) (0.68) (0.71) (0.68)
α31 -3.61∗∗ -2.20∗ -2.35∗ -3.53∗∗ -3.59∗∗ -4.04∗∗∗

(1.48) (1.27) (1.36) (1.42) (1.44) (1.37)
α12 -1.39∗∗ -1.02 -1.04 -1.05∗ -1.01∗ -1.29∗∗

(0.61) (0.77) (0.72) (0.63) (0.61) (0.53)
α32 -1.55∗∗ -0.67∗∗ -0.47 -1.31∗∗ -1.26∗∗ -2.56∗∗∗

(0.64) (0.74) (0.72) (0.64) (0.64) (0.73)
α13 0.88 1.73 1.63 1.80 1.63 2.17

(1.25) (1.09) (1.04) (1.41) (1.36) (1.67)
α23 -0.08 -0.20 -0.22 -0.09 -0.05 0.22

(0.66) (0.64) (0.62) (0.70) (0.69) (0.91)
β21 -0.45 -0.14 -0.17 -0.37 -0.47 -0.27

(0.31) (0.27) (0.32) (0.29) (0.30) (0.27)
β31 -0.29 -0.78 -0.74 -0.31 -0.31 -0.14

(0.56) (0.54) (0.57) (0.53) (0.55) (0.51)
β12 -0.01 -0.19 -0.11 -0.16 -0.14 -0.04

(0.22) (0.26) (0.24) (0.23) (0.22) (0.19)
β32 -0.08 -0.38 -0.46∗ -0.16 -0.19 -0.27

(0.23) (0.26) (0.26) (0.24) (0.23) (0.25)
β13 -1.28∗∗ -1.67∗∗∗ -1.62∗∗∗ -1.71∗∗ -1.61∗∗ -1.61∗∗

(0.57) (0.52) (0.49) (0.67) (0.64) (0.76)
β23 -0.28 -0.25 -0.24 -0.30 -0.29 -0.29

(0.22) (0.21) (0.21) (0.23) (0.22) (0.29)
Table 9
Structural model parameter estimates for no DIF (DIF 0), full DIF (DIF 1), time-constant
DIF (DIF 2), state-constant DIF (DIF 3), time- state- constant DIF (DIF 4), time- state-
constant DIF (DIF 4 (-)) with one no DIF item (“Racists”) and models with 3 latent
states and Cohort as covariate. The first state (“Tolerant”) is taken as reference for the
initial state multinomial regression, whereas the no-change state is taken as reference for
the transition probability multinomial regressions. Standard errors in parentheses (based on
the inverse hessian). ∗∗∗ p-value<0.01, ∗∗ p-value<0.05, ∗ p-value<0.1
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6 Conclusion

Model selection at scale level is crucial for correct assessment of differential item
functioning and accurate parameter estimation.

In the simulation study we have investigated the impact of various types of differential
item functioning. Results indicate that, if selection of the appropriate DIF structure at
scale level is correctly carried out, parameter estimates are quite precise under very wide
conditions and classification output is very precise. We report also that BIC was able to
select the correct DIF structure more than 95% of times.

In the empirical application, we have specified a time- and state- constant DIF for
a LM model with education as covariate, and a no DIF when using cohort as predictor of
class membership. The selection was based on the proposed procedure. In the first case
(education as predictor), the time- and state- constant DIF specification has a number
of extra parameters compared to the no DIF model. At item level, the direct effect of
Education on the probability of scoring a “Yes” on one item (allow “Racists” to speak in
public) was not significant. Regarding the structural model, although signs of the coefficients
were in line with each other, we have observed that estimates of the unselected models
were slightly greater in magnitude (in absolute value) than those of the selected model.
Concerning the second case (cohort as predictor), we found that older cohorts are less
likely, on average, to transition from the intolerant state to the tolerant state.

We have considered the effect of education and cohort separately on tolerance types.
However, future research might explore education and cohort effects (separately and inter-
acted) jointly.

Model specifications where the covariate(s) are allowed to have direct effects on the
indicators might be difficult to interpret. However, as our results have pointed out, the most
profitable strategy to get accurate parameter estimates seems the one taking into account
possible measurement non-invariance, rather than simply leaving DIF under the hood.

Although our selection approach has been based on the simultaneous estimator only,
its usefulness goes beyond that. Indeed our specifications and results offer an opportunity
to amend also stepwise estimators (Di Mari & Bakk, 2018; related to this, see the discussion
in Vermunt & Magidson, 2020).

As a general recommendation for applied users, whenever a DIF specification with
less parameters than the full DIF is selected, standard parameter testing can be used to
further simplify the model. However, note that selecting the DIF specification only based
on directional tests can be misleading. This is partly due to the fact that standard errors
might be inflated in overparameterized models. On this point, see also Battauz (2019).

Selection of the number of states, when model assumptions hold as well as when they
do not, is still an unresolved issue in model-based clustering in general. We have adopted
guidelines that give some guarantees (see, for instance, Bacci et al., 2014; Pohle et al., 2017).
More in general, the choice of the number of latent states can be done by combining infor-
mation criteria, researchers’ specifications and desires, and a priori information that may
be available. Investigating the properties of information criteria under different (realistic)
scenarios is however an important topic that deserves further research.
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Appendix
Additional results for the real-data application

In Table A1 we report the predicted initial and transition probabilities for Education levels,
for Type-4 model. In Table A2 we report the predicted initial and transition probabilities
for Cohort levels, for the measurement invariant model.

7.1 Cohort
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State (t = 1):
“Tolerant” “Middle” “Intolerant”

Education =
1 0.20 0.38 0.42
2 0.34 0.35 0.31
3 0.53 0.28 0.19
Education = 1

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.69 0.20 0.11
“Middle” 0.19 0.52 0.29
“Intolerant” 0.04 0.33 0.63
Education = 2

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.85 0.11 0.04
“Middle” 0.18 0.67 0.15
“Intolerant” 0.07 0.26 0.67
Education = 3

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.93 0.06 0.01
“Middle” 0.15 0.78 0.07
“Intolerant” 0.11 0.20 0.69

Table A1
Predicted initial and transition probabilities for Education levels for Type-4 model.
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State (t = 1):
“Tolerant” “Middle” “Intolerant”

Cohort =
1 0.51 0.33 0.15
2 0,48 0.32 0.20
3 0.44 0.31 0.25
4 0.40 0.29 0.31
Cohort = 1

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.84 0.14 0.02
“Middle” 0.17 0.69 0,14
“Intolerant” 0.28 0.30 0.42
Cohort = 2

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.89 0.10 0.01
“Middle” 0.17 0.70 0.13
“Intolerant” 0.11 0.31 0.58
Cohort = 3

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.93 0.06 0.01
“Middle” 0.17 0.71 0.12
“Intolerant” 0.04 0.27 0.69
Cohort = 4

State (t):
“Tolerant” “Middle” “Intolerant”

State(t− 1):
“Tolerant” 0.95 0.04 0.01
“Middle” 0.17 0.72 0.11
“Intolerant” 0.01 0.23 0.76

Table A2
Predicted initial and transition probabilities for Cohort levels for the no DIF model.
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