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Abstract: We derive a multivariate latent Markov model with number of latent states that can possibly
change at each time point.We model both the manifest and latent distributions conditionally on explana-
tory variables. Bayesian inference is based on a transdimensional Markov Chain Monte Carlo approach,
where Reversible Jump is separately performed for each time occasion. In a simulation study, we show
how our approach can recover the true underlying sequence of latent states with high probability, and
that it has lower bias than competitors. We conclude with an analysis of the well-being of 100 nations, as
expressed by the dimensions of the Human Development Index, for six-time points spanning a period
of 22 years. R code with an implementation is available as supplementary material, together with files for
reproducing the data analysis.
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1 Introduction

Latent Markov (LM) models (Zucchini et al., 2016; Bartolucci et al., 2013, 2014) provide a general
and flexible framework for modelling univariate and multivariate panel data. They are based on lo-
cal independence assumptions, where each outcome is independent of the past and other outcomes
conditionally on covariates; and on an unobserved discrete latent variableUit which is time-varying
and captures dynamic unobserved heterogeneity. The latter feature is particularly useful to remove
bias due to dependence and unmeasured covariates, and can in some contexts be used for cluster-
ing subjects after adjusting for measured ones. In the common formulation, Uit is based on k ∈ N
support points. A limitation of this is that in some cases certain groups might be empty at certain
time points, leading to model instability and over parameterization. A first attempt to overcome
this issue has been provided by Anderson et al. (2019a, b), who describe rectangular LM models in
which the number of latent states at time t = 1, . . . ,T is equal to kt; hence possibly time-varying.

Address for correspondence: Alessio Farcomeni, Department of Economics and Finance, Tor Vergata
University of Rome, Via Columbia 2, 00133 Rome, Italy.
E-mail: alessio.farcomeni@uniroma2.it

c© 2022 The Author(s) 10.1177/1471082X221127732

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1471082X221127732&domain=pdf&date_stamp=2022-11-16


2 Russo et al.

In these papers, models were specified mostly for clustering purposes, without the use of covariates.
More importantly, estimation was based on a penalized EMwhich can be computationally intensive
and requires tuning. The sequence kt was assumed to be known and specified by the user. Finally,
Anderson et al. (2019a, b) are restricted to Gaussian outcomes.

Ourmotivating application involves analysing the progress of nations’ development. In this anal-
ysis nations’ progress is not only evaluated by Gross Domestic Product (GDP), but it also involves
health and education (United Nations Development Programme, 1990). The two main questions
we address in this work are how many clubs of nations (number of latent states) one can identify at
each measurement occasion, and what are the determinants of mobility between different levels of
development. The first question was addressed also in Anderson et al. (2019a, b), wheremore details
about the motivating economic theory and background are given. Here we use updated data up to
2019, and unlike previous works, we provide a formal statement about the posterior distribution for
the sequence of latent states.

In our motivating example, the latent states identify clubs of nations with similar human de-
velopment profile. It is natural to wonder how many clubs there are, and if and how these change
over time. Theory of convergence in economics (Johnson and Papageorgiou, 2020) postulates that
the number of clubs should reduce over time, and finally converge to a single club. Rectangular LM
models can be useful anyway in several other settings. First of all, there are several applications in
which the number of latent states possibly changes over time. Our example is frommacroeconomics,
where the idea of varying number of clubs of nations is generally valid. In microeconomics latent
states often identify individual propensities; and some new attitudes or behaviours might emerge or
disappear over time, for example, in the study of fertility, work histories and retail. This is particu-
larly common in our experience with multivariate outcomes, where new patterns (e.g., high income
but lowwork intensity) might emerge or disappear over time. Similar examples exist in epidemiology
and ecology: at an aggregate (e.g., area) level the number of clusters might change due to changing
conditions (for the disease and/or risk factors in epidemiology, for climate in ecology). At individ-
ual level in epidemiology any intervention can cause the number of latent states to change (e.g., in
drug abuse whenever a new drug is introduced, or dealing strategies change, including prices; or a
new campaign is launched to raise awareness). In ecology, latent states often identify behaviours of
animals, which can change unexpectedly in response to cyclic (e.g., rain) patterns and due to inter-
action with other species. We shall conclude by adding that actually in any application the number
of latent states might change over time for idiosyncratic reasons, and a standard LM model might
yield biased fixed effects estimates in that cases. In our experience with standard LM models it can
happen that some latent states are almost empty at certain time points, an indication of varying
number of latent masses. For this reason, we suggest to always explore the class of rectangular LM
models, even when the number of latent states is not expected to change over time.

We give two main methodological contributions. First of all, we specify a completely general
rectangular LMmodel, where outcomes are a mix of continuous and categorical measurements and
both the manifest and latent distributions are conditioned on covariates. Covariates for the latent
distribution (Bartolucci et al., 2007, 2009) can be particularly useful to explain transitions, as in
our motivating application, which indeed is based on Gaussian outcomes. Secondly, we derive an
efficient transdimensional Markov Chain Monte Carlo sampler to obtain the posterior distribu-
tion of all parameters (therefore embedding the intensive model-choice step within the posterior
approximation procedure). A natural by-product of our sampler is the posterior distribution for the
sequence of the number of latent states.
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Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) (Green, 1995) is not new in the LM
context, see for instanceRobert et al. (2000),Cappé et al. (2003) andCappé et al. (2005).As in Spezia
(2010) and Bartolucci and Pandolfi (2018), we will use random walk Metropolis steps and avoid use
of the augmented likelihood. In our experience, these two choices are particularly advantageous in
the rectangular LM context, in terms of computational burden and mixing properties of the chain.
See also Paroli and Spezia (2010).

The rest of the article is organized as follows: in the next section we will introduce rectangular
LM models with covariates, and detail how to compute the likelihood and to specify default prior
distributions for the parameters involved. In Section 3wewill give details on aRJ-MCMCalgorithm
that can be used to approximate the posterior distribution for all parameters involved, including the
number of latent states. The approach is illustrated via a brief simulation study in Section 4 and
through the analysis of our motivating dataset in Section 5. Some concluding remarks about the
methodology and the implications of data analysis are given in Section 6. R code with an implemen-
tation is available as supplementary material, together with files for reproducing the data analysis.

2 Rectangular LM models

In our setting, we wish to flexibly model an r -variate outcome Yit, with r ≥ 1. The outcome can
be a mix of categorical and continuous measurements, which are repeated over Ti ≥ 1 occasions
for each of i = 1, . . . , n subjects. It is assumed for identifiability reasons that T = maxi Ti > 1. We
also conceptualize the existence of a discrete latent variable Uit, such that Yit is independent of Yis

for s < t conditionally on Uit. When r > 1 it is also customary to assume that Yitl is independent
of Yits for l �= s conditionally on Uit, even if this assumption can be relaxed to some extent (e.g.,
Bartolucci and Farcomeni, 2009). The outcomes will always be unconditionally dependent as the
LM chain induces both serial dependence and cross-dependence among them. A discrete stochastic
process model is then usually specified for Uit; for example, that it follows an homogeneous first-
order Markov chain with a time-fixed support based on k latent masses, namely Pr(Ui1 = j ) = π j

and Pr(Uit = j | Ui,t−1 = h) = πh j for t = 2, . . . ,T, j = 1, . . . , k and h = 1, . . . , k. This assumption
leads to standard multivariate LM models, where a unique k by k transition matrix is used.

A rectangular LM model is obtained when Uit is assumed to have a time-varying support. For-
mally, Uit can be assumed to have support 1, . . . , kt, for t = 1, . . . ,Ti . Configuration-specific ini-
tial and transition probabilities can be specified by assuming Pr(Ui1 = j |k1) = π jk1 and Pr(Uit =
j |Ui,t−1 = h, kt−1, kt) = πh jkt−1kt , where

∑k1
j=1 π jk1 = 1 and

∑kt
j=1 πh jkt−1kt = 1. In words, a propor-

tion π jk1 of subjects is assigned to the j th group (out of k1) at time t = 1. At time t = 2 a proportion
πh jk1k2 of subjects in group h at time 1 is assigned to group j , regardless of whether k1 = k2 or k1 �= k2.
Whenever kt−1 �= kt, a rectangular transition matrix is obtained, where subjects are re-arranged into
a new grouping configuration. For instance, when kt−1 = 4 and kt = 3, groups are re-arranged ac-
cording to a 4 x 3 transition matrix of the kind

⎡
⎢⎢⎣

π1143 π1243 π1343

π2143 π2243 π2343

π3143 π3243 π3343

π4143 π4243 π4343

⎤
⎥⎥⎦
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where, for example, a proportion π3143 of subjects in group 3 at time t − 1 moves to the new group
1 at time t. Marginal probabilities are easily obtained, for instance, Pr(Ui2 = j ) = ∑

h πhk1πh jk1k2 .
It is important to keep in mind for interpretation that being assigned to the group j when kt = 4
has a different meaning of being assigned to group j when kt = 3. For this reason, for example,
subjects in group 3 at time t − 1move to the new group 3 at time t with probability π3343; while sub-
jects in group 3 at time t − 1 persist in group 3 at time t with probability π3333 when kt−1 = kt = 3.
Interpretation of the latent states is still straightforward based on the conditional manifest distri-
bution (e.g., class-specific intercepts). The number and identity of units assigned to each class can
still change substantially when kt changes. Constraints can be used to limit this issue. For instance,
one can exclude transitions to non-adjacent states (that is, πh jkt−1kt = 0 if |h − j | > 1) and addition-
ally require that at each time point the number of groups is varied by at most one unit (that is, that
|kt − kt−1| ≤ 1).

The latent distribution can be conditioned on covariates through generalized linear models (see
also Bartolucci et al., 2009, for the case of standard LM models). To be more precise, use of p-
dimensional covariate vectors Zit (which usually will include a constant column for the intercept)
leads to subject-specific latent parameters πi jk1 , πih jkt−1kt ; i = 1, . . . , n. A local logit parameterization
can be used for the initial distribution, for j = 2, . . . , k1, as

log
(

πi jk1

πi1k1

)
= β jk1Zi1 (2.1)

whereas transitionmatrices can be modelled using lack-of-transition elements as baseline, for h �= j ,
as

log
(

πih jkt−1kt

πihhkt−1kt

)
= βh jkt−1ktZit. (2.2)

For ease of notation, we collect initial coefficients in the array β and transition matrices in the array
B.We remark here that wemake a time-homogeneity assumption for B parameters so that the effect
of (time-varying) covariates depends only on the transition of interest (e.g., state h to state j ), and
the current number of latent states, but not on t.

Themodel is completed by specification of amanifest distribution f (Yit|θ,Uit). Here θ is a short-
hand notation for the vector of free parameters. Under the assumptions of local and conditional
independence described above, f (Yit|θ ,Uit) = ∏

l fl(Yitl |θ ,Uit). A generalized linear model can be
specified, possibly conditionally on a q-dimensional covariate vector Xitl , as in Farcomeni (2015)
andBartolucci andFarcomeni (2022a).For each l = 1, . . . , r we assume thatYitl belongs to a natural
exponential family. Denoting with gl(·) a known link function, one can assume

gl(E[Yitl |Uit = h]) = ξhlkt + γ lktXitl .

Interpretation of the latent states, regardless of the sequence k1, . . . , kT, can be simply based on
(ξh1k, . . . , ξhrk), which identifies class-specific profiles that can not be explained through the observed
covariates.

We now give an expression for the number of parameters when k1, . . . , kT is fixed. In the ex-
pression below we identify values a such that

∑T
t=1 I(kt = a) > 0, that is, number of latent states
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occurring at least once in the sequence. We additionally identify adjacent values (a, b) such that∑
t>1 I(kt−1 = a ∩ kt = b) > 0, where I(·) is the indicator function; namely couples that occur at

least once in the fixed configuration k1, . . . , kT. Recall that we assumed Zit is p-dimensional for
all t = 1, . . . ,T. The number of parameters for the latent distribution is therefore (k1 − 1)p +∑maxt kt

a=1

∑maxt kt
b=1 I(

∑
t>1 I(kt−1 = a ∩ kt = b) > 0)a(b− 1)p. For the manifest distribution there will

be
∑maxt kt

a=1 I(
∑T

t=1 I(kt = a) > 0)ar latent intercepts, plus qr γ parameters and a number of nui-
sance parameters depending on parametric assumptions on each of the dimensions of the r -
dimensional outcome Y. As customary we have assumed that any nuisance parameters, and regres-
sion coefficients, are homogeneous with respect to the latent variable; but this can be easily relaxed.
In our motivating example for instance we specifically assume Yitl to be distributed like a Gaussian,
with {

E[Yitl |Uit = h] = ξhlkt

V[Yitl |Uit = h] = σ 2
hlkt

(2.3)

We do not therefore make a homogeneity assumption for the variance of Yitl conditionally on Uit,
and indeed different clubs of nations will be seen to have different variability (e.g., developed nations
show very little variability with respect to life expectancy at birth, while more variability is observed
in the other groups).

2.1 The likelihood
Direct computation of the observed log-likelihood would be cumbersome. It would indeed in-
volve a summation over all possible values that the sequence Ui1, . . . ,UiTi , for i = 1, . . . , n,
might take. In order to overcome this issue we adapt classical forward and backward recursions
(Bartolucci et al., 2013, 2014; Baum et al., 1970;Welch, 2003). Define forward probabilities αit(c) =
f (Yi1, . . . ,Yit,Uit = c | θ ), for c = 1, . . . , kt, t = 1, . . . ,Ti , i = 1, . . . , n. It is straightforward to
check that

αi1(c) = πick1 f (Yi1 | θ ,Ui1 = c) (2.4)

and, when Ti > 1, for t = 2, . . . ,Ti

αit(c) = f (Yit | θ ,Uit = c)
kt−1∑
h=1

πihckt−1ktαi,t−1(h) (2.5)

Since αiTi (c) = f (Yi1, . . . ,YiTi ,UiTi = c | θ ), the observed log-likelihood is therefore �(θ ) =∑n
i=1 log

(∑kTi
c=1 αiTi (c)

)
; and we denote the observed likelihood as L(θ ) = exp {�(θ )}. As with stan-

dard LM models, the likelihood can still be easily calculated in the presence of missing values by
replacing f (Yit | θ ,Uit = c) with 1 for all i t for which data are missing (Zucchini et al., 2016).

Our inferential procedure does not require additional computational overhead, being based on
the observed likelihood. After sampling from the posterior we might anyway be interested in ob-
taining an estimate of Pr(Uit = c|Yi1, . . . ,YiTi ), the posterior probability that unit i is in latent state
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c at time t. This can be used to evaluate the latent trajectory, using for instance a Maximum-A-
Posteriori (MAP) approach. In order to evaluate this quantity, we need to set up a backward recur-
sion based on bit(c) = f (Yi,t+1, . . . ,YiTi | θ ,Uit = c). Clearly, biTi (c) = 1. It can be shown that for
t = Ti − 1, . . . , 1 and c = 1. . . . , kt

bit(c) =
kt+1∑
d=1

πcdktkt+1bi,t+1(d) f (Yi,t+1|θ ,Ui,t+1 = d).

It is finally straightforward to see that

Pr(Uit = c|Yi1, . . . ,YiTi ) = αit(c)bit(c)∑
c αiTi (c)

.

We might use the estimated latent trajectory also for an overall assessment of persistence and vari-
ability across latent states.Given our rectangular framework, this is not straightforward.To this end,
we claim there is persistence if the same units are assigned to the same latent state over time. Let
Ûit denote the estimated assigned latent state for unit i at time t. We propose to assess persistency
through the index

k1∑
c=1

T∑
t=2

n−1∑
i=1

n∑
j=i+1

I(Ui1 = c,Uj1 = c)I(Uit = Ujt)/C, (2.6)

where C is the normalizing constantC = ∑k1
c=1

∑T
t=2

∑n−1
i=1

∑n
j=i+1 I(Ui1 = c,Uj1 = c). In words, if

two units are assigned to the same latent state at time t = 1, the more often they belong to the same
latent state for t > 1, the more persistency.

2.2 Prior distributions
Let kt,max denote the maximum number of latent states admitted a priori at time t = 1, . . . ,T; and
kmax = maxt kt,max. This shall be selected so that the algorithms only seldom, if ever, visit kmax and
consequently the posterior distribution has negligible mass on kt,max. In our implementation we have
always set kmax = 5. It is furthermore not mandatory to fix a maximal number of latent states ad-
mitted as one can alternatively assume an unbounded (e.g., Poisson) prior for kt if desired. In the
classical Bayesian setting prior distributions should be elicited in order to summarize prior knowl-
edge. When this is not available, we propose to use the following simple prior scheme:

(i) kt ∼ U(1, kt,max), where U(1, k) indicates the uniform distribution over integers 1, . . . , k.
(ii) β jaz ∼ N (0, 1) for j = 1, . . . , a, a = 1, . . . , k1,max, and z = 1, . . . , p.
(iii) βh jabz ∼ N (0, 1) for h = 1, . . . , a and j = 1, . . . , b over all possible configurations a =

1, . . . , kmax; b = 1, . . . , kmax, for z = 1, . . . , p.
(iv) ξ j la ∼ N (0, σ 2

ξ,la) for j = 1, . . . , a, a = 1, . . . , kmax and l = 1, . . . , r .
(v) If covariates are used for the manifest distribution, γ j l ∼ N (0, σ 2

γ ) for j = 1, . . . , a, a =
1, . . . , kmax and l = 1, . . . , r .
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An additional prior might have to be specified for each vector of nuisance parameters involved
in the conditional distributions of Yit. For instance, for model (2.3) we let σ 2

j la ∼ G(αla, βla) for
j = 1, . . . , a, a = 1, . . . , kmax, and l = 1, . . . , r ; where G(α, β) denotes a Gamma distribution with
parameters α and β. Possible alternatives involve uniform, half-normal or half-t priors. The scheme
above assumes that covariates are standardized to unit variance, which would make reasonable to
assume slopes in the range (−3, 3). The prior variances of regression coefficients can be otherwise
adjusted to the scale of each covariate. Also the other hyperparameters can be fixed to pre-specify a
reasonable range for the corresponding parameter, using the principle according to which the prior
can be conceived to contain the information of a single unit (Kass and Wasserman, 1995).

3 Posterior inference

In this section, we describe an MCMC approach, based on a set of fixed-dimensional and trans-
dimensional moves, in order to efficiently approximate the posterior distribution for the param-
eters and the configuration of time-varying latent states. Metropolis-Hastings steps are imple-
mented in order to update the parameters of the model conditionally on k1, . . . , kT; while, for each
t = 1, . . . ,T, split/combine and birth/death moves are performed to update the number of latent
states kt. For ease of presentation, we mostly refer to model (2.3), while simple adjustments can be
made for other specifications.

3.1 Fixed-dimensional moves
Fixed-dimensional moves are used to update model parameters conditionally on k1, . . . , kT. We
adopt a logarithmic transformation for the standard deviations σ in order to facilitate the algo-
rithm. We proceed sequentially by proposing an update for each parameter using a random-walk
Metropolis algorithm. Candidate updates are of the form:

1. β∗
jk1 = β jk1 + εβ with εβ ∼ N (0, τβI) for j = 1, . . . , k1, where N (0, τβI) denotes a multi-

variate normal variable of the appropriate dimension, with diagonal covariance matrix.
2. We then update only slopes associated with transitions that actually occur in the current

configuration k1, . . . , kT : for (a, b) such that
∑

t>1 I(kt−1 = a ∩ kt = b) > 0, β∗
h jab = βh jab +

εB with εB ∼ N (0, τBI) and for h = 1, . . . , a and j = 1, . . . , b.
3. Similarly, we update latent intercepts and standard deviations for each number of latent states

occurring at least once in the current configuration k1, . . . , kT: for a such that
∑T

t=1 I(kt =
a) > 0, ξ∗

j la = ξ j la + εξ with εξ ∼ N (0, τξ ) for j = 1, . . . , a and l = 1, . . . , r ; furthermore
log σ ∗

j la = log σ j la + εσ with εσ ∼ N (0, τσ ) for j = 1, . . . , a and l = 1, . . . , r .
4. If covariates are used for the manifest distribution, γ ∗

l = γ l + εl with εl ∼ N (0, τγ I) for l =
1, . . . , r .

Each block of proposals is accepted or rejected at random. Candidates β∗
k1 are accepted with

probability

min
(
1,

L((β∗
k1 ,βkt−1kt , σ , ξ , γ )) pβ(β∗

k1 )

L((βk1,βkt−1kt , σ , ξ , γ )) pβ(βk1 )

)
,
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where pβ(·) denotes the prior of β. We proceed similarly for β∗
ab, ξ∗ and γ ∗, while for σ ∗ we also

take into account the logarithmic transformation and accept the proposal with probability

min

(
1,
L((βk1 ,βkt−1kt , σ

∗, ξ , γ )) pσ (σ ∗)
L((βk1,βkt−1kt , σ , ξ , γ )) pσ (σ )

×
∏

j l σ j l∏
j l σ

∗
j l

)
.

In case transition matrices are constrained so that certain transitions are impossible, we simply do
not update the corresponding parameters.

3.2 Split/combine moves
A separate transdimensional sampling must be performed for each t = 1, . . . ,T. Regarding the first
set of transdimensional steps, for each t we choose between a split or combine move with probability
0.5 when 1 < kt < kt,max; a split move is always proposed when kt = 1, and a combine move is pro-
posed when kt = kt,max. In case the sequence is constrained so that the number of latent states can
increase or decrease at most by one unit, for 1 < t < T we choose between a split or combine move
only when kt = kt−1 = kt+1. If kt = kt−1 + 1 or kt = kt+1 + 1, we always propose a combine move;
and similarly a split move is always proposed if kt = kt−1 − 1 or kt = kt+1 − 1. It is straightforward
to adapt this rule for the cases t = 1 and t = T.

In case a split step is selected, a latent state j0 is selected uniformly at random, and split in
two new regimes j1 and j2. In the reverse combine move, two adjacent states j1 and j2 are selected
uniformly at random, and merged into a new state j0.

This is performed differently according to whether t = 1, 1 < t < T or t = T.
For a split move when t = 1, one shall perturbate vector β j0k1 as

β j1,k1+1 = β j0k1 − εk1

β j2,k1+1 = β j0k1 + εk1 ,

with εk1 ∼ N (0, τk1I). Additionally, if k1 + 1 is not currently present in the sequence (k2, . . . , kT),
that is, if

∑
t>1 I(kt = k1 + 1) = 0, we perturbate ξ and σ as

ξ j1l,k1+1 = ξ j0lk1 − σ j0lk1ul ξ j2l,k1+1 = ξ j0lk1 + σ j0lk1ul
σ j1l,k1+1 = σ j0lk1wl σ j2l,k1+1 = σ j0lk1/wl

(3.1)

with ul ∼ N (0, τu) and wl ∼ G(αw, βw), for l = 1, . . . , r . Finally, if the subsequence (k1 + 1, k2) is
not currently present in the sequence (k2, . . . , kT), that is, if

∑
t>1 I(kt = k1 + 1 ∩ kt+1 = k2) = 0 one

shall also perturbate β j0vk1k2 as

β j1v,k1+1,k2 = β j0vk1k2 − εv

β j2v,k1+1,k2 = β j0vk1k2 + εv,

with εv ∼ N (0, τvI) for v = 1, . . . , k2.
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When t = 1, the combine move amounts to the following operations:

β j0,k1−1 = (β j1k1 + β j2k1 )/2

where the operation is intended elementwise. If
∑

t>1 I(kt = k1 − 1) = 0,

ξ j0l,k1−1 = (ξ j1lk1 + ξ j2lk1 )/2 σ j0lk1−1 = (σ j1lk1σ j2lk2 )
1/2 (3.2)

for l = 1, . . . , r ; and

β j0v,k1−1,k2 = (β j1vk1k2 + β j2vk1k2 )/2

for v = 1, . . . , k2 if
∑

t>1 I(kt = k1 − 1 ∩ kt+1 = k2) = 0.
The split move at t = 1 is accepted with probability min{1, A1} whereas the combine move is

accepted with probability min{1, A−1
1 }, where

A1 = L(θ̃k1+1)
L(θk1)

× p(k1 + 1)
p(k1)

× (k1 + 1)!
k1!

× p(θ̃k1+1)
p(θk1)

×
(
Ck1+1/k1
Sk1/k1

)

× |J1|
p(εk1 )[p(ul)p(wl )]I(

∑
t>1 I(kt=k1+1)=0) p(εv)I(

∑
t>1 I(kt=k1+1∩kt+1=k2)=0)

,

(3.3)

where we used a tilde to denote the parameters characterized by k1 + 1 regimes. Note that, in (3.3),
priors (partially) simplify if some parameters are not perturbed, for example, if

∑
t>1 I(kt = k1 +

1) = 1, priors for ξ and σ simplify. In (3.3), Ck1+1/k1 and Sk1/k1 are the probabilities of combining
two adjacent regimes out of k1 possible pairs and to split a specific j0 out of k1 available regimes,
respectively; while |J1| is the determinant of the Jacobian of the transformation. It can be shown
that this is the product of three elements, namely

|J1| =
(
4r
∏
l

σ 2
j0l

wl

)I(
∑

t>1 I(kt=k1+1)=0)
2p
(
2k2 p

)I(∑t>1 I(kt=k1+1∩kt+1=k2)=0)
.

More details are given in the Supplement.
A similar reasoning shall be applied for each t = 2, . . . ,T − 1. First of all, one has to check

if there already exists the new subsequence (kt−1, kt + 1), and then similarly for the subsequence
(kt + 1, kt+1).

If
∑

s>1,s �=t I(ks−1 = kt−1 ∩ ks = kt + 1) = 0, one shall perturbate vectors βh j0kt−1kt as

βh j1kt−1,kt+1 = βh j0kt−1kt − εh

βh j2kt−1,kt+1 = βh j0kt−1kt + εh,

with εh ∼ N (0, τhI) and h = 1, . . . , kt−1.
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One then shall check if subsequence (kt + 1, kt+1) is already active, or has just been updated.
If
∑

s≥1,s �=t I(ks−1 = kt + 1 ∩ ks = kt+1) = 0 and I(kt−1 = kt + 1 ∩ kt+1 = kt + 1) = 0, one shall per-
turbate β j0vktkt+1

as

β j1v,kt+1,kt+1
= β j0vktkt+1

− εv

β j2v,kt+1,kt+1
= β j0vktkt+1

+ εv,

with εv ∼ N (0, τvI). Finally, if
∑

s �=t I(ks = kt + 1) = 0, ξ and σ are split as before. The combine
move proceeds along similar lines as the case t = 1.

The split move is accepted with probability min{1, At}, whereas the combine move is accepted
with probability min{1, A−1

t }, with

At = L(θ̃kt+1)
L(θkt )

× p(θ̃kt+1)
p(θkt )

(
Ckt+1/kt
Skt/kt

)
× |Jt|(kt + 1)

[p(ul )p(wl)] p(εh) p(εv)
, (3.4)

where we let p(ul) = p(wl) = 1 if ξ and σ are not updated, and similarly for p(εh) and p(εv). For ease
of notation we also let Ckt+1 = Skt/(kt + 1) if none among β, ξ , σ are modified. Once again, prior
distributions might (partially) simplify. We also have now explicited the fact that p(kt + 1) = p(kt).
The determinant of the Jacobian transformation is also the product of three terms:

|Jt| =
(
4r
∏
l

σ 2
j0l

wl

)I

(∑
s �=t

I(ks=kt+1)=0

)
(
2kt−1 p

)I( ∑
s>1,s �=t

I(ks−1=kt−1∩ks=kt+1)=0

)
. (3.5)

(
2kt+1 p

)I( ∑
s≥1,s �=t

I(ks−1=kt+1∩ks=kt+1)=0

)
(1−I(kt−1=kt+1∩kt+1=kt+1))

.

The last set of split/combine moves corresponds to the case t = T. This case proceeds as the case
1 < t < T, with the exception of the β parameters involving transitions from the current state, which
obviously can not occur. As a result, auxiliary variables εv are not used and |JT | only involves a prod-
uct of the first two terms in (3.5). More details on |Jt|, for t = 1, . . . ,T, are given in the Supplement.

3.3 Birth/death moves
A second set of transdimensional moves involve birth and death of regimes. In a birth move, if
needed a new regime j0 is generated by sampling parameters directly from their respective priors.
The remaining parameters are simply copied. In the death move if needed a regime j0 is selected
uniformly at random, and deleted along with the corresponding parameters. As for the previous
set of transdimensional moves, we proceed separately for t = 1, . . . ,T, with a different procedure
according to whether t = 1, 1 < t < T, or t = T.
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When t = 1, the birth move is accepted with probability min{1, A1} whereas min{1, A−1
1 } is the

probability of accepting a death move. The analytic expression for A1 is:

A1 = L(θ̃k1+1)
L(θk1)

× p(θ̃k1+1)
p(θk1)

×
(
Dk1+1/(k1 + 1)
Bk1/(k1 + 1)

)
×

× (k1 + 1)

p(β j0,k1+1) [p(β j0v,k1+1,k2 )]
I(
∑

t>1 I(kt=k1+1∩kt+1=k2)=0) [p(ξ j0l,k1+1)p(σ j0lk1+1)]I(
∑

t>1 I(kt=k1+1)=0)
,

(3.6)
where as anticipated we generate ξ and σ parameters only if kt �= k1 + 1 for all t > 1. Priors might
simplify, as in the previous section. Bk1/k1 and Dk1+1/(k1 + 1) are the probability of giving birth or
death to the specific regime j0, which may cancel out as outlined in the previous subsection.

When 1 < t < T, the birth move is accepted with probability min{1, At} whereas min{1, A−1
t } is

the probability of accepting a death move. The analytic expression for At is:

At =L(θ̃kt+1)
L(θkt )

× p(θ̃kt+1)
p(θkt)

×
(
Dkt+1/(kt + 1)
Bkt/(kt + 1)

)
×

× (kt + 1)
[p(β j0v,kt+1,kt+1

)] [p(βh j0kt−1,kt+1)] [p(ξ j0l,kt+1)p(σ j0l,kt+1)]
.

(3.7)

where as before Dkt+1 = Bkt/(kt + 1) if none among β, or ξ and σ parameters are modified. Addi-
tionally, p(β j0v,kt+1,kt+1

) = 1 if a transition from kt + 1 to kt+1 latent states is present elsewhere in the
sequence k1, . . . , kT , and similarly for p(βh j0kt−1,kt+1), p(ξ j0l,kt+1), and p(σ j0l,kt+1). These conventions
allow us to avoid including indicator functions in (3.7).

Finally, if t = T, the acceptance probabilities are analogous to (3.7), with the exception of pa-
rameters involving transitions from the current state, which are removed from the formulas. Note
that Jacobians can be shown to be equal to the unity in all cases for birth/death moves as proposed.

3.4 Label switching and parameter estimation
Label switching is tackled in-line by reordering the parameters at the end of each iteration so that
ξ11a ≤ · · · ≤ ξa1a for a = 1, . . . ,maxt kt, as in Bartolucci andFarcomeni (2022a).The first dimension
of ξ is chosen without loss of generality. More complex alternatives are described for instance in
Marin et al. (2005) and Bartolucci and Farcomeni (2022b).

In our implementation, after burn-in and thinning, we estimate the posterior distribution of
parameters involved as usual. Namely, for the sequence of discrete parameters, we both look for the
most frequent configuration sampled, and for the most frequent number of latent states for each
t. The latter corresponds to the median model, which has some interesting properties (Barbieri and
Berger, 2004; Farcomeni, 2010). For the continuous parameters, posterior means can be estimated
conditionally on the selected configuration of latent states; or ignoring the current configuration, in
a model-averaging fashion.
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4 A simulation study

We report here results of a simulation study. We fix n = {100, 250}, T = {4, 6}. We use a standard
data-generating process with kt = 4 ∀ t, additionally rectangular sequences (4, 4, 3, 3) when T =
4 and (4, 4, 3, 4, 3, 4) when T = 6. We then generate two covariates as time-varying independent
standard normals to modulate the initial and transition probabilities as in (2.1) and (2.2). For the
β and B coefficients associated to the covariates we use a common value b, with b = {0, 1.5}. These
parameters are not assumed to be equal to each other at the estimation stage. For each of r = 3
Gaussian outcomes latent mean parameters ξ are generated as equally spaced between zero and
skt, with s = {2.5, 4}. If the true sequence is time-varying, component-specific variances are always
set equal to 1. When the true sequence is constant we fixed s = 4 and let σ 2 = {1, 2.25} to test our
procedure in the presence ofmore overlapping latent masses. Combining all possible values for these
parameters leads to thirty-two scenarios at the data generation stage.

For each scenario, we generate data B = 100 times and compare three different approaches to
model estimation. First, we use our RJ-MCMC method to estimate a rectangular LM with co-
variates on the latent distribution and unknown number of regimes (RJC). We compare this with
a rectangular LM without covariates (RJ), and with a standard LM with covariates in which the
number of latent states is fixed, and assumed to be equal to k = 4 (FC). Accordingly, for this model,
the number of latent states is correct for some t, and over-estimated at other times. This is what one
could expect to happen with standard LM when the true number of latent states is time-varying.

In Table 1 we report the probability of selecting the correct sequence of latent states for each
method and scenario, and the square Root of the Median Squared Error (RMSE) for the posterior
mean of each approach when the true sequence of latent states is varying. Table 2 reports analogous
quantities to assess the performance of the proposed methodology in scenarios where the true se-
quence of latent states is constant. For the RMSE we restrict to estimates of ξ 4, β4 and B44 as these
are the only parameters that are estimated by all methods. It shall be noted that the probability of
correct identification for FC is zero when a time-varying sequence is adopted at the generation stage,
since the number of latent states is misspecified and fixed. Similarly, for RJ β and B coefficients are
fixed to zero, which incidentally gives a zero RMSE when b = 0.

From Tables 1 and 2 it can be seen that our RJC/RJ approaches are able to correctly identify
the true sequence of latent states with high probability; even when covariates are omitted, and in-
dependently of whether the true latent sequence varies with time or not. This probability increases
with the sample size. Similarly, both with and without covariates estimates for ξ 4 are clearly better
than those associated to a constant number of latent states, because of misspecification, while we
perform as good as competitors when the true sequence is constant over time and FC models are
correctly specified. Rectangular LM models can then be expected to be less biased than standard
LM models; which are a special case. A similar effect is seen for the RMSE associated to covariate
coefficients, especially comparing RJC with FC when misspecification occurs. This effect can be
prominent for B44 coefficients, with RMSE of FC almost twice that of RJC in some cases. All in
all, our general proposal in these scenarios seems to be the one leading to smallest RMSE overall.
Finally, unsurprisingly, all RMSE values decrease with the sample size and T, since larger data ma-
trices bring about more information. The computational cost associated to a single replicate of our
simulation setting varies with the complexity of the data-generating process and the sample size,
with average time around 2.5 hours on a Xeon 3,0 Ghz with 128 GB RAM.
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Table 1 Simulation study with rectangular data generation process. Probability of correct identification

( ̂Pr(k̂ = k)) for the sequence of latent states; and RMSE for ξ4,β4 and B44, in different scenarios. RJC denotes
our proposal, RJ our proposal with omitted covariates, and FC a standard LM model with k = 4; b denotes the
value of covariate coefficients at data generation, and s group separation

̂Pr(k̂ = k) RMSE(ξ4) RMSE(β4) RMSE(B44)

n T b s RJC RJ FC RJC RJ FC RJC RJ FC RJC RJ FC

100 4 1.5 2.5 0.86 0.89 0.00 0.21 0.21 0.30 0.42 1.50 0.43 0.86 1.50 0.88

100 4 1.5 4.0 1.00 0.99 0.00 0.29 0.29 0.43 0.41 1.50 0.41 0.82 1.50 0.90

100 4 0.0 2.5 0.98 0.99 0.00 0.19 0.19 0.27 0.27 0.00 0.28 0.58 0.00 0.69

100 4 0.0 4.0 1.00 1.00 0.00 0.26 0.26 0.41 0.27 0.00 0.27 0.57 0.00 0.70

100 6 1.5 2.5 0.92 0.95 0.00 0.13 0.12 0.19 0.41 1.50 0.43 0.82 1.50 1.11

100 6 1.5 4.0 1.00 1.00 0.00 0.16 0.16 0.28 0.42 1.50 0.41 0.83 1.50 1.13

100 6 0.0 2.5 0.92 0.99 0.00 0.13 0.13 0.20 0.26 0.00 0.25 0.60 0.00 0.65

100 6 0.0 4.0 1.00 1.00 0.00 0.17 0.17 0.28 0.26 0.00 0.26 0.60 0.00 0.66

250 4 1.5 2.5 1.00 1.00 0.00 0.11 0.11 0.27 0.25 1.50 0.25 0.58 1.50 0.82

250 4 1.5 4.0 1.00 1.00 0.00 0.13 0.13 0.41 0.24 1.50 0.25 0.57 1.50 0.84

250 4 0.0 2.5 1.00 1.00 0.00 0.10 0.10 0.26 0.17 0.00 0.17 0.45 0.00 0.66

250 4 0.0 4.0 1.00 1.00 0.00 0.11 0.11 0.40 0.17 0.00 0.17 0.46 0.00 0.67

250 6 1.5 2.5 1.00 1.00 0.00 0.07 0.07 0.19 0.23 1.50 0.24 0.57 1.50 1.09

250 6 1.5 4.0 1.00 1.00 0.00 0.08 0.08 0.29 0.23 1.50 0.22 0.56 1.50 1.11

250 6 0.0 2.5 1.00 0.99 0.00 0.07 0.07 0.17 0.17 0.00 0.17 0.45 0.00 0.62

250 6 0.0 4.0 1.00 1.00 0.00 0.08 0.08 0.26 0.17 0.00 0.17 0.44 0.00 0.62

5 Data analysis

Well-being, development, and wealth are multidimensional and complex characteristics, which can
not be directly measured. There are several possible ways to indirectly measure these characteris-
tics at national level. We rely here on the Human Development Index (HDI), which is the official
index of the United Nations Development Programme (1990). The HDI is a geometric average of
measurements of three domains. The first domain involves income levels, as measured by the Gross
National Income (GNI) per capita in purchasing power parity (PPP) international dollars. The sec-
ond is an indicator of health, as measured by life expectancy at birth. The third is an indicator of
education level, as measured by a weighted average of expected years of schooling andmean years of
schooling. In this work, similarly to other papers investigating well-being of nations, we do not use
HDI as a univariate endpoint, but instead model the r = 3 dimensions separately. Our main tasks,
as discussed in the introduction, include assessment of the number of clubs over time and potential
club convergence; composition of nations’ clubs; country-individual trajectories across clubs over
time; and association of these features with interesting covariates.

We collect data for each country and year of interest, over a time horizon spanning from
1998 to 2019 for T = 6 time points. We have decided to use only 6 of the 22 available time
points. The main reason is that well-being, especially at the aggregate level, tends to evolve slowly
over time. An additional point is the computational cost, which would become prohibitive for
such a long panel. It shall be noted that results do not seem to be sensitive to the exact choice
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Table 2 Simulation study with standard data generation process with kt = 4. Probability of correct

identification ( ̂Pr(k̂ = k)) for the sequence of latent states; and RMSE for ξ4,β4 and B44, in different scenarios.
RJC denotes our proposal, RJ our proposal with omitted covariates, and FC a standard LM model with k = 4; b
denotes the value of covariate coefficients at data generation, and s group separation

̂Pr(k̂ = k) RMSE(ξ4) RMSE(β4) RMSE(B44)

n T b s σ 2 RJC RJ FC RJC RJ FC RJC RJ FC RJC RJ FC

100 6 1.5 4.0 1.00 1.00 1.00 1.00 0.11 0.11 0.11 0.40 1.50 0.42 1.09 1.50 1.09

100 6 1.5 4.0 2.25 1.00 1.00 1.00 0.21 0.21 0.21 0.41 1.50 0.41 1.09 1.50 1.10

100 6 0.0 4.0 1.00 1.00 1.00 1.00 0.10 0.10 0.10 0.25 0.00 0.26 0.36 0.00 0.37

100 6 0.0 4.0 2.25 1.00 1.00 1.00 0.19 0.19 0.20 0.26 0.00 0.27 0.37 0.00 0.38

100 4 1.5 4.0 1.00 1.00 1.00 1.00 0.15 0.15 0.15 0.41 1.50 0.41 1.01 1.50 1.02

100 4 1.5 4.0 2.25 0.98 0.98 1.00 0.30 0.30 0.30 0.40 1.50 0.41 1.01 1.50 1.01

100 4 0.0 4.0 1.00 1.00 1.00 1.00 0.14 0.14 0.14 0.27 0.00 0.27 0.44 0.00 0.44

100 4 0.0 4.0 2.25 1.00 1.00 1.00 0.27 0.27 0.28 0.27 0.00 0.27 0.44 0.00 0.45

250 6 0.0 4.0 2.25 1.00 1.00 1.00 0.10 0.10 0.10 1.11 0.00 1.11 0.42 0.00 0.43

250 6 1.5 4.0 1.00 1.00 1.00 1.00 0.06 0.06 0.06 0.24 1.50 0.24 1.05 1.50 1.05

250 6 0.0 4.0 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.17 0.00 0.17 0.24 0.00 0.25

250 6 0.0 4.0 2.25 1.00 1.00 1.00 0.09 0.09 0.09 0.18 0.00 0.17 0.25 0.00 0.24

250 4 1.5 4.0 1.00 1.00 1.00 1.00 0.07 0.07 0.07 0.25 1.50 0.25 0.99 1.50 0.99

250 4 1.5 4.0 2.25 1.00 1.00 1.00 0.13 0.14 0.13 0.25 1.50 0.25 0.99 1.50 0.99

250 4 0.0 4.0 1.00 1.00 1.00 1.00 0.07 0.07 0.07 0.17 0.00 0.17 0.31 0.00 0.32

250 4 0.0 4.0 2.25 1.00 1.00 1.00 0.13 0.13 0.13 0.17 0.00 0.17 0.32 0.00 0.31

of number and location of time points, as long as the entire period is spanned. Data are col-
lected from Human Development Reports (http://hdr.undp.org/en/data); and World Bank
(https://databank.worldbank.org/home.aspx), including its Worldwide Governance Indica-
tors (WGI) project (https://info.worldbank.org/governance/wgi). It shall be noted that time
points are not exactly equally spaced. This could be simply taken care of by including time as a co-
variate in ourmodel.We did not do so in the results presented as lag betweenmeasurement occasions
proved to be an essentially irrelevant covariate. One alternative way to deal with irregularly spaced
time points is the use of a continuous-time Markov chain (Jackson et al., 2003; Bockenholt, 2005;
Bartolucci and Farcomeni, 2019).We focus on the n = 100 countries having population greater than
or equal to 2millions in 2019. In addition to the three dimensions of theHDI, we collect information
regarding the Government Effectiveness (Gov. Eff.) and Trade shares (Exports + Imports as % of
GDP). The Gov. Eff. index is constructed by the WGI project to measure how optimistically public
policies and government’s commitment are perceived. There are clearly other possible choices, but
we considered these two covariates as promising since good institutions and government policies
are expected to create the right environment for economic growth and prosperity (Acemoglu and
Robinson, 2010, 2012); and conventional belief predicts a growth-enhancing effect of trade (Gross-
man and Helpmann, 1991), even though some theoretical studies (Lucas, 1988) claim that trade
openness may hamper growth under certain conditions.

Table 3 reports yearly medians and interquartile ranges (IQR) for the described panel. A clear
increasing trend is seen for all indicators, excluding Trade which has a quadratic trend. All in all,
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Table 3 HDI data. Year-specific median and interquartile range (IQR) for HDI components,
government effectiveness, and trade.

Median

Year GNI Life Exp. Exp. Edu. Gov. Eff. Trade

1998 8026.5 69.80 11.35 −0.229 56.24
2003 8979.5 71.45 12.10 −0.272 64.07
2007 10328.5 72.70 12.75 −0.259 72.56
2011 11022.5 73.75 13.35 −0.154 72.25
2015 12023.5 74.50 13.55 −0.172 66.36
2019 13839.0 75.05 13.85 −0.077 68.88

IQR

Year GNI Life Exp. Exp. Edu. Gov. Eff. Trade

1998 16231.5 14.32 5.55 1.152 44.57
2003 18900.2 14.95 5.43 1.332 39.59
2007 23054.7 14.90 4.80 1.259 44.96
2011 22722.5 13.17 4.22 1.311 50.50
2015 22471.0 11.58 4.40 1.219 48.54
2019 24459.2 10.18 4.73 1.235 44.72

the world has improved over the past twenty years in terms of HDI dimensions, and government
effectiveness. Shares of trades have slightly decreased after peaking. Looking at IQR, we see that
heterogeneity across nations in terms of education and health have decreased, while variability in
terms of income have increased.

We now proceed with data analysis. We first remove overall trends from the data, including the
covariates, by subtracting year-specific overall medians. We fit in this section the unconstrained
model, while in the Supplement we report results about the model constrained to avoid transi-
tions to non-adjacent states and admitting the number of groups to increase or decrease by at most
one unit at each occasion. These are anyway very similar to the ones reported in this section. We
then run our Markov Chain Monte Carlo algorithm for 250 000 iterations, which took about 72
hours to complete. At convergence, we discard the initial 20 000 iterations as burn-in. In order to
reduce computation time, only 12 000 iterations after burn-in include transdimensional updates.We
checked convergence evaluating trends and Auto Correlation Functions, both visually and with for-
mal tests. These results are not shown for reasons of space. We also computed the Gelman and
Rubin (1992) Potential Scale Reduction Factor with two parallel chains, obtaining a value of 1.001,
well below the cut-off of 1.1 (Gelman et al., 2014). The final sequence is thus satisfactory in terms of
convergence.

The upper panel of Table 4 reports the posterior distribution for the number of latent states
on each time occasion. Our RJC approach indicates the presence of kt = 4 latent regimes for all
t = 1, . . . , 6. The sequence (4, 4, 4, 4, 4, 4) has posterior probability equal to 0.998, and it coincides
with the median model; while alternative sequences have very low probability. We thus choose a
standard LMmodel, where latent states define the same classes across time. This result is seemingly
at odds with Anderson et al. (2019a), who find that after 2000 there are 3 rather than 4 clusters.
Even if Anderson et al. (2019a) use a slightly different set of data, we can speculate this difference
is mostly due to the use of covariates. Indeed, both Anderson et al. (2019a) and Anderson et al.
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Table 4 HDI data. Posterior distribution for the number of latent states at
each time occasion. Upper panel: default priors. Lower panel:
informative priors

kt 1998 2003 2007 2011 2015 2019
3 .00025 .00025 .00017 .00008 .00058 .00058
4 .99958 .99958 .99967 .99967 .99933 .99942
5 .00017 .00017 .00017 .00025 .00008 .00000
3 0.0000 0.0000 0.0000 .00033 .00033 .00058
4 .99992 1.0000 1.0000 .99958 .99967 .99933
5 .00008 0.0000 0.0000 .00008 0.0000 .00008

Table 5 HDI data. Posterior means for latent centroids and standard deviations for the
k = 4 latent states. 95% highest-posterior-density intervals are reported in parenthesis

ξ1 ξ2 ξ3 ξ4

GNI −0.71
(−0.72,−0.69)

−0.23
(−0.30,−0.16)

0.49
(0.37,0.65)

3.04
(2.84,3.23)

Life Exp. −1.81
(−1.93,−1.71)

−0.30
(−0.42,−0.19)

0.17
(0.11,0.23)

0.85
(0.81,0.88)

Exp. Edu. −1.25
(−1.33,−1.17)

−0.28
(−0.38,−0.16)

0.29
(0.24,0.35)

1.07
(1.01,1.14)

σ1 σ2 σ3 σ4

GNI 0.10
(0.09,0.11)

0.26
(0.22,0.30)

0.51
(0.45,0.57)

1.07
(0.95,1.19)

Life Exp. 0.66
(0.59,0.74)

0.47
(0.41,0.53)

0.30
(0.25,0.34)

0.20
(0.18,0.22)

Exp. Edu. 0.50
(0.45,0.55)

0.32
(0.27,0.38)

0.30
(0.26,0.34)

0.41
(0.36,0.46)

(2019b) find that even separated groups are getting closer to each other over time. It is reasonable
then that in addition to explaining transitions covariates lead to more separate groups, so that they
are now more clearly distinct. Additionally, Anderson et al. (2019a) use a frequentist approach and
can actually make no claims about the evidence in favour of the chosen sequence of latent states,
which is the main advantage of our formal Bayesian method based on Reversible Jump.

In order to better compare our results with previous contributions, we fit our model again us-
ing an informative prior for the number of latent clusters at each time occasion. Specifically, we
used a priori information with Pr(kt = 4) = 0.65 before 2010 and Pr(kt = 3) = 0.65 afterwards. The
posterior distribution is reported in the lower panel of Table 4, and it is very similar to the one above.

Table 5 reports parameters’ estimates for the centroids and the standard deviations. It can be
seen that the four latent states are well separated, and can be interpreted as representing increasing
levels of well-being overall. Standard deviations are clearly increasing over increasing levels of well-
being for GNI. On the other hand, standard deviations for life expectancy are decreasing as some
countries with low GNI and education are still successful in guaranteeing a good life expectancy,
and some in the same group have a very low life expectancy. Rich countries have little differences
in life expectancy at birth. Heterogeneity for education levels shows instead a parabolic shape over
latent states.
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Table 6 HDI data. Posterior means for β and B parameters. Transitions to states with identical labels are
used as a reference category for the multinomial logit transformation. For the initial probabilities, k1 is
used as reference. 95% highest-posterior-density intervals are reported in parenthesis

Coeffs Initial Probs

β14 β24 β34 β44

Intercept 0.00
(−)

−0.18
(−0.87,0.59)

0.23
(−0.44,0.87)

−0.84
(−1.84,−0.01)

Gov. Eff. 0.00
(−)

0.30
(−0.54,1.18)

1.06
(0.27,1.86)

3.08
(2.00,4.06)

Trade 0.00
(−)

0.61
(0.07,1.16)

0.71
(0.20,1.22)

0.55
(−0.10,1.19)

Coeffs Trans Probs

β1144 β1244 β1344 β1444

Intercept 0.00
(−)

−2.98
(−4.52,−1.41)

−3.54
(−5.44,−1.85)

−3.55
(−5.16,−1.82)

Gov. Eff. 0.00
(−)

2.04
(0.02,4.13)

2.20
(0.01,4.67)

2.13
(−0.08,4.24)

Trade 0.00
(−)

−0.21
(−1.66,1.14)

0.14
(−1.44,1.55)

0.15
(−1.39,1.66)

β2144 β2244 β2344 β2444

Intercept −4.12
(−5.52,−2.60)

0.00
(−)

−3.12
(−4.56,−1.81)

−4.16
(−5.71,−2.70)

Gov. Eff. 0.90
(−1.11,2.90)

0.00
(−)

1.41
(−0.82,3.26)

0.88
(−1.20,3.28)

Trade −0.70
(−2.32,0.75)

0.00
(−)

−0.82
(−2.28,0.66)

−0.70
(−2.34,0.83)

β3144 β3244 β3344 β3444

Intercept −4.52
(−6.01,−3.21)

−3.29
(−4.40,−2.30)

0.00
(−)

−4.36
(−5.77,−2.96)

Gov. Eff. −0.07
(−2.11,1.84)

−1.35
(−3.04,0.15)

0.00
(−)

−1.09
(−3.22,1.17)

Trade −0.61
(−1.75,0.37)

−0.15
(−0.69,0.34)

0.00
(−)

−0.57
(−1.65,0.37)

β4144 β4244 β3444 β4444

Intercept −3.76
(−5.41,−2.29)

−3.86
(−5.48,−2.87)

−3.21
(−4.64,−1.97)

0.00
(−)

Gov. Eff. −1.00
(−2.32,0.04)

−0.96
(−2.13,0.31)

−1.29
(−2.28,−0.24)

0.00
(−)

Trade −0.88
(−2.36,0.55)

−0.87
(−2.34,0.38)

−0.62
(−1.91,0.51)

0.00
(−)

Median estimated initial probabilities, after averaging across country-specific estimates, are
(.328, .275, .310, .086), while the median estimated �̂44 is

⎡
⎢⎢⎣
0.934 0.030 0.018 0.018
0.012 0.946 0.030 0.012
0.009 0.045 0.932 0.013
0.020 0.019 0.045 0.916

⎤
⎥⎥⎦

Results for the transition probabilities suggest high persistence of units across latent states over
time. The index of persistency (2.6) indeed is equal to 0.8748, which is rather large. As could be
expected, only a minority of countries belong to the club of most rich ones (8.6% in 1998), and
marginally transitions are not frequent. More details will be given below, by analysing country-
specific trajectories.

Table 6 summarizes the posterior means of coefficients modulating initial and transition proba-
bilities, together with 95% credible intervals (CI). For initial probabilities, increments in theGov. Eff.
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generally lead to higher probabilities of belonging to latent states with higher well-being. The incre-
ment is proportional as β2 j4 is increasing in j . On the contrary, increasing trade shares contribute
only to reduce the probability of starting in first latent state, as β3 j4 is positive and approximately
constant over j = 2, 3, 4. In terms of transitions, for ease of interpretation, we restrict attention to
coefficients associated with a CI that does not include zero. It can be seen that the probability of
shifting from the lowest level of well-being to the higher ones is increased by the degree of govern-
ment effectiveness of the country, while trade openness does not play a relevant role.

We conclude this section by reporting on relevant estimated country-specific transitions. Using
a MAP approach, it can be inferred that China has improved its level of well-being over time, with
a transition occurring in 2011 from state 2 to state 3. India has transitioned from state 1 to state 2
in 2007. Countries such as the USA and Sweden persistently dwelled in latent state 4. Russia has
persisted in latent state 3, and countries such as Nigeria, Niger and Bangladesh have not moved
from state 1 during the period of observation. For reasons probably linked to political instability
and war, Libya has experienced two latent transitions, one in 2007 and one in 2011, declining from
state 4 to state 2 in a short time frame.

6 Conclusions

We have proposed a general framework for modelling rectangular LM models with covariates for
the latent distribution. Our Bayesian framework allows us to make inference also on the sequence
of latent states. The sampling strategy proposed does not use completion, and proves to be flexi-
ble, have good convergence properties, and avoid computational overheads. It can be used also for
standard LMmodels, as we did in the simulation study. In our experience, our Bayesian fitting pro-
cedure is also advantageous over frequentist approaches in terms of computing times with slightly
more complex models (e.g., more than one outcome, more than three or four covariates, longer
panels).

Our simulation studies clearly indicate that more standard frameworks, which are embedded in
our model class, might lead to biased estimates when the true data-generating mechanism is not
well specified. Extensions include the case of mixed LM models (Altman, 2007; Maruotti, 2011;
Bartolucci and Farcomeni, 2015; Naranjo et al., 2020), in which additional random effects can be
used for clustered data; use of regularization (Farcomeni, 2017; Otting and Andreas, 2021), both
for increased stability and use of more flexible (e.g., non-parametric) regression functions; and the
use of copulas (e.g., Brunel and Pieczynski, 2005; Hardle et al., 2015; Otting et al., 2021) to relax
the conditional independence assumption.

We stress that researchers need to be careful, as common with mixture models, about which
covariates to include and whether they should model only the manifest, only the latent, or both
distributions conditionally on them. Interpretation of the results is different, and more importantly
inclusion of irrelevant covariates can have unpredictable effects on the estimates. It is known in the
literature that including covariates might indeed either increase or decrease the true number and
variability of the latent states across time, and similarly for standard errors of parameters. For some
more details and additional remarks see Anderson et al. (2016); Bartolucci et al. (2013); Böckenholt
(1997); Di Mari et al. (2022).
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We used our model to investigate the dynamics of human development over the period 1998–
2019. There is strong evidence that countries are clustered into four well-separated groups that
correspond to different stages of well-being, in line with other contributions focusing on the identi-
fication of nations’ clubs (Phillips and Sul, 2007, 2009; Pittau et al., 2010).We estimated limited but
relevantmobility between classes. The degree of government effectiveness, which reflects the capacity
of the government to effectively formulate and implement sound policies, is clearly positively associ-
ated both with initial state and transition probability. Trade plays a more complex role. Our results
are linked with the empirical literature on the convergence hypothesis, see, for example, Johnson and
Papageorgiou (2020) for a review. Our findings are consistent with the theory of club convergence,
with growth being somehow constrained to the limiting behaviour of countries.More in detail, while
some countries are improving their conditions, others are left behind, in a growth acceleration pro-
cess that is fragile and fragmented. As a consequence, the number of nations’ clubs is not reducing
over time, as one would expect in a convergent world, and only their composition is changing.
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