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Abstract
In	order	to	analyse	worldwide	data	about	access	to	food,	
coming	 from	 a	 series	 of	 Gallup's	 world	 polls,	 we	 pro-
pose	 a	 hidden	 Markov	 model	 with	 both	 a	 spatial	 and	
a	 temporal	component.	This	model	 is	estimated	by	an	
augmented	data	MCMC	algorithm	in	a	Bayesian	frame-
work.	Data	are	 referred	 to	a	 sample	of	more	 than	750	
thousand	 individuals	 in	 166	 countries,	 widespread	 in	
more	 than	 two	 thousand	 areas,	 and	 cover	 the	 period	
2007–	2014.	The	model	is	based	on	a	discrete	latent	space,	
with	the	latent	state	corresponding	to	a	certain	area	and	
time	occasion	that	depends	on	the	states	of	neighbour-
ing	areas	at	the	same	time	occasion,	and	on	the	previous	
state	for	the	same	area.	The	latent	model	also	accounts	
for	 area-	time-	specific	 covariates.	 Moreover,	 the	 binary	
response	variable	(access	to	food,	in	our	case)	observed	
at	individual	level	is	modelled	on	the	basis	of	individual-	
specific	covariates	through	a	logistic	model	with	a	vec-
tor	of	parameters	depending	on	the	latent	state.	Model	
selection,	in	particular	for	the	number	of	latent	states,	is	
based	 on	 the	 Watanabe–	Akaike	 information	 criterion.	
The	application	shows	the	potential	of	the	approach	in	
terms	of	clustering	the	areas,	data	smoothing	and	pre-
diction	of	prevalence	for	areas	without	sample	units	and	
over	time.
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1 |  INTRODUCTION

Data	 with	 both	 spatial	 and	 temporal	 dimensions	 are	 nowadays	 produced	 in	 many	 fields,	 and	
require	 sophisticated	 statistical	 models	 and	 inferential	 methods	 to	 be	 analysed.	 In	 this	 paper	
we	focus	on	data	deriving	from	Gallup's	world	poll	(GWP)	surveys	that,	each	year,	are	based	on	
samples	of	individuals	from	several	countries	and	territories.	Gallup	is	an	American	firm	that,	
since	1935,	conducts	public	polls	worldwide.	GWP	data	are	commonly	used	to	investigate	socio-	
economic	issues,	especially	concerning	aspects	related	to	well-	being	(e.g.	Deaton,	2008;	Frongillo	
et al.,	2017;	Powdthavee	et al.,	2017).

Among	the	aspects	examined	by	the	GWP	questionnaire,	we	focus	in	particular	on	lack	
of	access	to	food,	a	theme	that	nowadays	is	gathering	much	interest	in	the	study	of	poverty	
(e.g.	 Bhattacharya	 et  al.,	 2004;	 Mahadevan	 &	 Hoang,	 2016;	 Nord	 et  al.,	 2008;	 Rose,	 1999;	
Smith	et al.,	2017;	Suryanarayana	&	Silva,	2007).	This	aspect	 is	observed	through	a	binary	
response	variable	 that	 is	 individual	 specific	and	 indicates	whether	 the	household	was	not	
able	to	afford	food	within	the	past	12	months.	The	available	data	are	collected	in	166	world	
countries	and	territories	for	the	period	2007–	2014	(eight	waves).	In	our	survey,	each	country	
is	suitably	divided	in	areas,	for	a	total	of	more	than	two	thousand	areas.	A	limitation	of	the	
world	poll	is	that,	with	simple	models,	accurate	estimates	can	be	aggregated	at	most	at	the	
country/territory	level.	It	is	well	known	that	dramatic	heterogeneity	can	be	present	within	
many	countries,	where	certain	regions	can	be	at	low	risk	of	poverty,	while	other	regions	of	
the	same	country	can	be	at	high	risk.	It	would	be	therefore	useful	for	politicians,	stakehold-
ers,	charities	and	non-	governmental	organizations	to	have	access	to	estimates	with	a	greater	
spatial	disaggregation.	Formally,	our	main	interest	is	in	estimating	prevalence	of	people	that,	
at	area	level,	are	at	least	occasionally	not	able	to	afford	food	for	themselves	or	their	family.	
We	do	so	by	pooling	spatial	and	temporal	information,	in	order	to	reduce	variability	due	to	
the	possible	small	number	of	individuals	sampled	in	the	specific	area	of	interest.	A	series	of	
covariates	are	also	available	for	every	individual	which	will	be	used	to	further	decrease	the	
mean	squared	error	of	the	estimates.	The	geographic	subregion	of	each	country	is	our	target	
for	producing	estimates.

For	the	analysis	of	such	data	we	propose	a	spatio-	temporal	approach	based	on	the	assumption	
that	the	response	variable	follows	a	 logistic	model	 including	the	individual-	specific	covariates	
and	depending	on	vectors	of	regression	coefficients	that	are	area	and	wave	specific.	This	is	for-
malized	by	associating	a	discrete	latent	variable	(with	a	finite	number	of	categories)	to	every	area	
and	wave.	Each	category	corresponds	to	a	different	vector	of	regression	coefficients.	These	latent	
variables	are	assumed	to	follow	a	Markov	model	with	spatial	and	time	dependence.	In	partic-
ular,	every	area-		and	wave-	specific	latent	variable	is	assumed	to	depend	on	the	latent	variables	
associated	with	the	neighbours	at	the	same	time	occasion	and	to	the	latent	variable	for	the	same	
area	at	the	previous	time	occasion.	The	latent	state	can	be	interpreted	in	terms	of	area-		and	wave-	
specific	propensity	to	lack	of	access	to	food.	Similar	models	have	been	used	so	far,	to	the	best	of	
our	knowledge,	only	to	tackle	spatial	or	temporal	aspects	separately	(e.g.	Dotto	et al.,	2019;	Li	
Donni	&	Marino,	2018).

The	assumptions	mentioned	above	give	rise	to	a	hierarchical	model	that	may	be	seen	as	a	tem-
poral	extension	of	a	hidden	Markov	field	model	(Green	&	Richardson,	2002;	Qian	&	Titterington,	
1991;	Spezia	et al.,	2018),	with	covariates;	or	as	a	spatial	extension	of	a	hidden	Markov	model	
(Bartolucci	&	Farcomeni,	2015;	Bartolucci	et al.,	2013,	2014;	Zucchini	et al.,	2017),	again	with	
covariates.	As	in	many	other	approaches,	in	formulating	the	assumed	latent	structure,	we	take	
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inspiration	from	the	seminal	paper	of	Besag	(1986).	For	spatio-	temporal	approaches	related	to	the	
proposed	one,	but	applied	in	different	fields,	see	Wei	and	Li	(2008),	Ailliot	et al.	(2009),	Lawson	
(2013	Ch.	12)	and	Lin	et al.	(2015).

We	adopt	a	Bayesian	approach	for	model	estimation.	We	refer	the	reader	to	Marshall	(1991)	
for	an	introduction	to	spatial	clustering,	and	to	Best	et al.	(2005)	and	Lawson	(2013)	specif-
ically	 for	Bayesian	models	 for	 spatial	 (disease)	mapping.	The	proposed	model	 is	estimated	
by	 a	 Markov	 chain	 Monte	 Carlo	 (MCMC)	 algorithm	 based	 on	 data	 augmentation	 (Tanner	
&	Wong,	1987),	as	we	 treat	 the	 latent	variables	on	 the	same	 footing	as	 the	model	parame-
ters	 that	are	updated	at	each	 iteration	of	 the	algorithm.	We	also	deal	with	 label	 switching	
(Stephens,	2000),	by	post-	processing	the	MCMC	output,	and	model	selection,	on	the	basis	of	
the	Watanabe–	Akaike	information	criterion	(WAIC;	Watanabe,	2010),	so	that	the	model	mar-
ginal	likelihood	is	not	necessary.	R	code	with	an	implementation	of	our	approach	is	available	
from	 https://github.com/afarc	ome/LMsae.	 This	 implementation	 includes	 Fortran	 routines	
to	speed	up	the	computation	given	the	very	 large	sample	size,	which	is	over	750	thousand	
individuals.

The	main	feature	of	the	proposed	approach	is	that	it	allows	us	to	cluster	country	areas	into	a	finite	
number	of	groups	in	a	dynamic	fashion.	Exploiting	the	dependence	in	space	and	time	of	the	latent	
variables,	this	clustering	is	possible	also	when,	for	a	specific	wave,	data	are	not	available	in	a	certain	
area	because	no	individuals	have	been	sampled.	Moreover,	it	is	possible	to	predict	the	prevalence	of	
at	least	occasional	lack	of	access	to	food	for	every	area	and	wave.	The	prediction	is	a	smoothed	(less	
noisy)	version	of	the	observed	one,	when	data	are	observed,	or	a	pure	prediction,	when	no	data	are	
observed.	As	we	illustrate	in	the	application,	this	allows	us	to	make	nice	graphical	representations	
in	the	form	of	dynamic	maps	of	the	characteristic	of	interest.	The	approach	here	proposed	may	be	
easily	extended	to	deal	with	different	situations	when	we	observe	more	response	variables,	for	each	
individual,	even	if	these	variables	are	mixed	discrete	and	continuous.

The	paper	is	organized	as	follows.	In	the	next	section	we	provide	a	description	of	the	available	
data.	The	proposed	model	is	illustrated	in	Section	3,	whereas	Bayesian	inference	based	on	the	
MCMC	algorithm	is	described	in	Section	4.	The	results	of	the	analysis	are	described	in	Section	5	
and	last	section	reports	some	conclusions.

2 |  DATA DESCRIPTION

The	GWP	is	a	survey	conducted	by	interviewing	nationally	representative	samples	of	the	adult	
population	(aged	15	and	older)	in	almost	every	world	country	or	territory.	The	sampling	is	re-
peated	each	year,	so	that	different	individuals	are	interviewed	within	each	country	at	different	
waves.	The	survey	covers	a	 range	of	 topics	 including	 family	economics,	employment,	human	
development	and	well-	being.	About	1,000	individuals	for	every	country	are	included	each	year	
by	Gallup,	with	some	variability	and	the	exception	of	about	3,000	for	India	and	5,000	for	China.	
Some	oversampling	has	occurred,	for	example	in	major	cities,	 in	certain	areas.	See	Gallup	or-
ganization	(2020)	for	specific	details.	Sampling	involves	a	random-	digit-	dial	telephone	survey	in	
countries	where	more	than	80%	of	the	population	has	landline	phones,	and	area	frame	designs	
for	face-	to-	face	interviewing	otherwise.

In	our	final	data	set	we	include	a	total	of	760,282	subjects,	essentially	representative	of	the	
world	population	for	the	years	from	2007	to	2014.	Our	aim	is	to	investigate	the	area-	time-	specific	
prevalence	of	subjects	who	replied	‘Yes’	to	the	following	question:

https://github.com/afarcome/LMsae
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‘Have	there	been	times	in	the	past	12	months	when	you	did	not	have	enough	money	
to	buy	food	that	you	or	your	family	needed?’

Over	the	period,	198,788	subjects	replied	‘Yes’	to	this	question	(coded	as	1	in	our	analysis	and	
tagged	as	‘food	insecure’	in	the	rest	of	the	paper)	and	the	remaining	replied	‘No’	(coded	as	0	in	
our	analysis	and	tagged	as	‘food	secure’	in	the	rest	of	the	paper).	The	‘food	insecure’	terminology	
is	used	only	for	simplicity:	it	shall	be	here	noted	that	food	insecurity	is	a	broader	concept	than	the	
mere	lack	of	money	to	buy	food,	and	that	it	shall	therefore	be	kept	in	mind	that	our	target	is	simply	
the	prevalence	of	subjects	who	at	least	occasionally	lack	the	money	to	buy	food	for	them	or	their	
family.	Before	proceeding	further,	we	must	warn	that	some	measurement	error	might	be	influ-
encing	the	results.	First	of	all,	some	subjects	might	not	reply	sincerely	to	this	sensitive	question.	
Additionally,	given	the	way	it	is	formulated,	there	might	be	some	recall	bias.	Other	issues	involve	
measurement	invariance	and	intended	meaning.	Some	measurement	errors	might	arise	from	the	
fact	that	the	question	at	hand	is	asked	to	people	of	different	cultures,	speaking	different	languages.	
In	order	to	minimize	translation	issues	Gallup	prepares	and	validates	questionnaires	in	English,	
French	and	Spanish.	A	professional	translator	then	uses	one	or	more	of	the	main	questionnaires	
to	prepare	that	in	the	language	spoken	in	the	sampled	household.	A	second	professional	translator	
compares	original	and	translated	questionnaire,	and	suggests	refinements.

The	overall	sample	prevalence	is	26.1%.	This	prevalence	shows	a	strong	spatial	and	temporal	
heterogeneity.	In	the	upper	panel	of	Table	1	we	show,	for	illustration,	raw	prevalence	estimates	
stratified	by	continent	and	year.	 In	 the	Supplementary	Material	we	give	a	complete	graphical	
account	reporting	maps	of	raw	and	predicted	prevalence	estimates.

It	is	obvious	that	a	very	large	spatial	heterogeneity	exists	for	the	proportion	of	food	insecure	
in	the	world,	and	also	(and	possibly	more	interesting)	temporal	variability.	In	addition	to	identi-
fying	a	country	for	each	respondent,	Gallup	also	releases	information	on	the	main	subregion	of	
residence	within	the	country.	Each	country	is	divided	in	a	variable	number	of	subregions,	with	
several	countries	having	more	than	25	subregions	(e.g.	Russia,	China,	India,	Brazil,	etc.).	Clearly,	
some	areas	might	not	have	been	sampled	in	certain	years.	In	the	bottom	panel	of	Table	1	we	show	
the	number	of	missing	areas,	by	continent	and	wave.

Our	main	objective	in	this	study	is	to	obtain	a	reliable	(‘smoothed’)	estimate	of	prevalence	of	
food	insecure	within	each	country-	specific	area,	by	pooling	information	over	neighbouring	areas	
and	time	points.	We	end	up	working	with	2,141	areas	that	cover	all	continents,	with	the	exception	
of	Antarctica.

In	order	to	pool	 information	we	also	use	two	different	sets	of	covariates.	Covariates	used	
at	site	level	are	latitude,	longitude,	the absolute value of latitude	and	indicator variables for the 
continent	(using	the	classification	in	six	continents	that	distinguishes	between	North	and	South	
America).	In	this	way	we	model	fixed	effects	with	the	logic	that	geographically	closer	areas	tend	
to	be	similar	and	at	the	same	time	we	account	for	more	or	less	globally	disadvantaged	world	
regions	 and	 the	 general	 effect	 of	 distance	 from	 the	 equator.	 We	 recall	 that	 these	 covariates	
affect	the	distribution	of	the	area-	specific	latent	variables	that	may	be	used	to	cluster	directly	
these	areas	in	distinct	groups.	At	subject	level	we	will	use	age	(median:	40	years,	inter-	quartile	
range:	 28),	 squared age,	 gender	 (46%	 females)	 and	 quintiles of equivalized disposable income 
within the country	included	by	suitable	indicator	variables.	These	can	be	expected	to	be	related	
to	access	to	food,	at	least	in	some	countries/territories.	The	average	age	stratified	by	continent	
and	wave	is	reported	in	the	second	upper	panel	of	Table	1,	while	in	the	third	panel	we	report	
the	stratified	proportion	of	females.	We	observe	that	age	of	the	respondents	is	slightly	variable	
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over	time,	with	more	substantial	differences	between	continents.	Gender	proportions	do	not	
show	a	strong	variability,	as	could	be	expected.

3 |  SET UP AND MODEL ASSUMPTIONS

Let	n	denote	the	number	of	sites	(areas)	and	let	mjt	be	the	number	of	sampled	units	in	site	j	at	
occasion	t,	with	j = 1, …, n	and	t = 1, …, T.	Note	that,	by	design,	unit	i	in	site	j	at	occasion	t	is	in	
general	different	from	unit	i	in	the	same	site	j	at	another	occasion	t′.	For	each	of	these	units	we	
observe	a	column	vector	of	covariates	xijt	and	a	binary	outcome	 yijt;	all	response	variables	are	
collected	in	the	set		having	

∑n
j=1

∑t
t=1mjt	elements.	In	order	to	maintain	a	concise	exposition,	

we	use	the	same	symbol	for	a	random	variable	or	one	of	its	realizations.	The	same	convention	
will	be	used	for	random	vectors	and	matrices.

We	also	observe,	at	site	level,	column	vectors	of	covariates	denoted	by	zjt.	The	n-	dimensional	
binary	symmetric	matrix	C	is	used	to	identify	neighbouring	areas,	with	cjj� = 1	if	site	 j′	is	a	neigh-
bour	of	site	j	on	a	lattice	that	is	not	necessarily	regular.	The	proposed	multilevel	spatial–	temporal	
model	is	based	on	latent	variable	ujt	for	every	site	j	and	time	occasion	t.	These	latent	variables,	
collected	in	the	n × T	matrix	U,	are	discrete	with	k	support	points,	labelled	from	1	to	k.	A	crucial	

T A B L E  1 	 Empirical	statistics	stratified	by	continent	and	year.	First	panel:	prevalence	of	food	insecure.	
Second	panel:	average	age.	Third	panel:	proportion	of	females.	Fourth	panel:	number	of	areas	not	sampled

2007 2008 2009 2010 2011 2012 2013 2014

Prevalence	of	
food	insecure

Africa 0.49 0.53 0.42 0.43 0.43 0.43 0.52 0.51

Americas 0.07 0.08 0.10 0.36 0.35 0.33 0.37 0.33

Asia 0.25 0.23 0.22 0.23 0.21 0.22 0.26 0.26

Europe 0.20 0.13 0.18 0.15 0.12 0.11 0.17 0.14

Oceania 0.11 0.11 0.11 0.10 0.12 0.14 0.09 0.10

Average	age Africa 34.11 34.26 34.93 35.05 35.65 35.61 35.43 35.32

Americas 52.84 49.00 50.40 41.75 42.40 42.12 42.39 44.02

Asia 39.16 40.25 38.00 38.76 38.87 39.62 39.74 41.27

Europe 44.57 48.27 48.20 49.01 50.54 50.98 47.95 48.44

Oceania 44.10 44.32 46.95 50.81 50.29 49.21 53.20 54.90

Percentage	of	
females

Africa 0.51 0.52 0.51 0.52 0.52 0.50 0.52 0.50

Americas 0.47 0.43 0.45 0.44 0.43 0.43 0.43 0.44

Asia 0.45 0.46 0.48 0.48 0.47 0.47 0.47 0.49

Europe 0.40 0.43 0.41 0.40 0.43 0.44 0.43 0.46

Oceania 0.49 0.49 0.44 0.38 0.38 0.43 0.41 0.42

Number	of	areas	
not	sampled

Africa 618 503 480 399 353 349 351 0

Americas 309 301 300 87 88 90 52 0

Asia 424 239 210 205 156 112 61 6

Europe 576 452 403 336 275 264 273 0

Oceania 31 0 31 0 0 0 1 0
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assumption	is	that,	given	the	covariates	and	the	latent	variables,	the	response	variables	 yijt	are	
conditionally	independent	with	conditional	Bernoulli	distribution,	that	is,

where	the	success	probability	is	formulated	according	to	the	logistic	model

based	on	regression	parameters	�u	depending	on	the	latent	state	for	site	j	at	occasion	t.	These	regres-
sion	parameters	are	collected	in	the	matrix	B = (�1, …, �k)

�.	Vectors	xijt	are	assumed	to	be	known,	
and	include	an	initial	element	for	intercept.	A	similar	assumption	is	adopted	for	the	second-	level	
covariates	zjt.	The	success	probabilities	will	also	be	denoted	by	qijt(u, B)	to	stress	their	dependence	
on	the	parameters	in	B.

Regarding	the	distribution	of	the	latent	variables,	we	assume	a	Markov	chain	that	accounts	for	
the	spatial	structure.	In	particular	let	ũjt	be	the	vector	of	latent	variables	uj′t	if	 j′	is	a	neighbour	of	
j,	namely	cjj� = 1.	Taking	inspiration	from	the	auto-	logistic	model	(Besag,	1974),	we	assume	that	
the	initial	probabilities	of	the	hidden	Markov	chain,	conditional	on	the	states	of	the	neighbours,	
are	equal	to

where	the	denominator	is	the	normalizing	constant	that	obviously	does	not	vary	with	u	and,	in	gen-
eral,	zjt(ũjt) = (z�

jt
, f (ũjt)

�)�,	with	 f (ũjt)	being	a	column	vector	summarizing	the	states	of	the	neigh-
bours	of	site	j	at	occasion	t.	In	our	implementation	we	assume	that	 f (ũjt)	is	a	k-	dimensional	vector	
with	the	uth	element	equal	to	the	proportion	of	neighbours	having	latent	state	equal	to	u	and	zjt(ũjt)	
is	specified	so	as	to	avoid	identifiability	problems.

For	the	column	vector	�j(ũj1) = (�j(1|ũj1), …, �j(k|ũj1))�	we	use	an	overall	parametrization	
based	on	 the	matrix	notation	 that	simplifies	 the	 implementation	of	 the	estimation	algorithm.	
Including	all	�u	vectors	in	the	matrix	� = (�2, …, �k)

�,	we	have	that	

where	 in	general	Mu	 is	an	 identity	matrix	of	dimension	k,	without	 the	uth	column.	 In	 the	
following	we	also	use	the	notation	�j(u|ũj1, �)	 for	the	elements	of	this	vector	to	stress	their	
dependence	on	Γ.

Regarding	 the	 transition	 probabilities	 we	 assume	 a	 similar	 parametrization,	 but	 using	 the	
starting	state	as	reference	category,	that	is,

yijt|ujt ∼ Bin(1, qijt(ujt)), ujt = 1, …, k,

(1)qijt(u) = p(yijt = 1|ujt = u) =
exp(x�

ijt
�u)

1 + exp(x�
ijt
�u)

,

�j(u�ũj1) =p(uj1=u�ũj1)
=

1

1+
∑k

v=2 exp(zj1(ũj1)
��v)

�
1, u=1,

exp(zj1(ũj1)
��u), u=2, … , k,

�j
(
ũj1

)
=

1

1�exp(M1�zj1(ũj1))
exp(M1�zj1(ũj1)),

�jt(u�u�, ũjt) =p(ujt=u�uj,t−1=u�, ũjt)
=

1

1+
∑k

v=1
v≠u�

exp(zjt(ũjt)
��u�v)

�
1, u=u�,

exp(zjt(ũjt)
��u�u), u=1, …, k, u ≠ u�,
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for	u� = 1, …, k.	Note	that	each	area-	time-	specific	latent	state	depends	on	the	latent	states	of	the	
neighbours	for	the	same	time	occasion	(taking	again	inspiration	from	the	auto-	logistic	model)	and	on	
the	previous	latent	state	for	the	same	site	(as	in	a	standard	hidden	Markov	model).	Also	in	this	case	we	
can	adopt	a	matrix	formulation.	Including	the	elements	in	the	u′th	row	of	the	transition	matrix,	that	
is,	�jt(u|u�, ũjt),	u = 1, …, k,	in	the	vector	�jt(u�, ũjt)	and	with	�u� = (�u�1, …, �u�, u�−1, �u�,u�+1, �u�k)

�	,	
we	have	that

We	also	denote	by	Δ	the	matrix	collecting	parameter	vectors	�u′u	for	u�, u = 1, …, k,	with	u ≠ u′,	
and	in	the	following	we	use	the	notation	�jt(u|u�, ũ, �)	for	the	elements	of	the	above	vector.

Regarding	prior	distributions,	we	assume	that	all	parameters	are	independent	with

where	0	and	I	are	a	column	vector	of	zeros	and	an	identity	matrix	of	suitable	dimension,	respectively,	
and	�2

�
,	�2�	and	�2

�
	are	variance	parameters	that	in	our	application	are	fixed	at	large	values,	such	as	100.	

It	shall	be	noted	that	in	our	application	we	did	not	observe	relevant	sensitivity	to	these	prior	inputs.

4 |  BAYESIAN INFERENCE

Bayesian	inference	is	based	on	the	posterior	distribution	of	model	parameters	and	latent	param-
eters,	which	may	be	expressed	as	

where	we	explicitly	indicate	the	dependence	of	the	distributions	of	the	parameters	and	we	use	the	
usual	proportionality	symbol	∝	.	In	the	previous	expression,	p(B),	p(Γ)	and	p(Δ)	refer	to	the	prior	
distribution	of	the	corresponding	parameters	and	have	density	functions	

The	distribution	of	the	set	of	latent	variables	Ujt,	collected	in	matrix	U,	cannot	be	computed	exactly.	
For	computational	convenience	this	distribution	is	substituted	with

�it(u
�, ũjt) =

1

1�exp(Mu��u�zjt(ũjt))
exp(Mu��u�zjt(ũjt)), u� = 1, …, k.

�u ∼N(0, �2
�
I), u=1, …, k,

�u ∼N(0, �2�I), u=2, …, k,

�u�u ∼N(0, �2
�
I), u� =1, …, k, u=2, …, k,

(2)p(B,�,�,U |) ∝ p(B)p(�)p(�)p(U |�,�)p(|U ,B),

p(B) =

k∏
u=1

p(�u),

p(�) =

k∏
u=2

p(�u),

p(�) =

k∏
u�=1

k∏
u=1
u≠u�

p(�u�u).

(3)p̃(U |�, �) =
n∏
j=1

[
�(uj1|ũj1,�)

T∏
t=2

�(ujt|uj,t−1, ũjt ,�)
]
,
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which	 is	a	pseudo-	probability	 in	 the	sense	of	Besag	 (1975).	For	a	discussion	about	 this	ap-
proximation	for	the	case	of	cross-	sectional	spatial	data	see,	among	others,	Spezia	et al.	(2018).	
These	authors	also	rely	on	a	method	to	avoid	the	approximation	of	p(U|Γ, Δ)	that	is	based	on	
auxiliary	Monte	Carlo	steps	within	the	estimation	algorithm.	In	the	present	context,	which	
is	more	complex	due	to	the	presence	of	data	with	both	a	spatial	and	temporal	dimension,	we	
prefer	to	directly	use	pseudo-	probability	(3)	also	because	the	very	large	size	of	the	sample	we	
analyse	requires	to	limit	the	computational	burden	of	the	estimation	algorithm.	Moreover,	the	
use	of	pseudo-	distributions	in	place	of	the	corresponding	true	distributions	is	not	uncommon	
in	spatial	statistics	and	we	do	not	expect	it	to	strongly	affect	the	estimation	results.	See	also	
Spezia	et al.	(2017)	for	other	examples	of	the	use	of	pseudo-	probabilities	in	related	spatial	con-
texts	and	Friel	and	Pettitt	(2004),	Friel	et al.	(2009)	and	Everitt	(2012)	for	a	discussion	about	
the	implication	of	their	use.

Finally,	regarding	the	conditional	distribution	of	the	response	variables	yijt	collected	in	the	set	
,	we	have

where	yjt	is	the	vector	of	the	mjt	individual	outcomes	yijt	at	time	t	in	site	j.

4.1 | Markov chain Monte Carlo algorithm

In	order	to	approximate	the	posterior	distribution	of	model	parameters,	we	rely	on	an	MCMC	
algorithm,	with	an	augmented	parameter	space.	The	algorithm	is	based	on	repeating	a	series	of	
single	steps	for	a	suitable	number	of	iterations	R.	The	single	steps	of	the	proposed	algorithm	are	
described	in	the	following.

•	 Update of the	�u	parameters:	For	u = 1, …, k,	we	propose	�∗

u	from	distribution	N(�u, �2�I),	
namely	a	multivariate	normal	distribution	centred	on	the	current	parameter	vector	and	with	
variance	depending	on	�2

�
.	The	proposed	parameter	vector	is	accepted	with	probability

where	B∗

u	is	obtained	by	substituting	the	uth	column	of	the	current	matrix	B	with	�∗

u.
•	 Update of the latent variables	ujt:	Using	a	Gibbs	sampler,	for	j = 1, …, n	and	t = 1, …, T,	we	

draw	ujt	from	a	categorical	distribution	with	vector	of	probabilities	r jt	obtained	in	a	different	
way	depending	on	the	specific	time	occasion	t.	For	the	first	time	occasions,	the	elements	of	r j1	
are

p(|U ,B) =
n∏
j=1

T∏
t=1

p (yjt|ujt,B),

p(yjt|ujt,B) =
mjt∏
i=1

q (ujt,B)
yijt[1−q(ujt,B)]

1−yijt ,

�(�∗

u,�u) =min

(
1,
p(�∗

u)p(|U ,B∗

u)

p(�u)p(|U ,B)
)
,

�j(u�ũj1,�)sj1(u��)�j2(uj2�u, ũj2,�)p(yj1�uj1 = u,B)
∑k

v=1 �j(v�ũj1,�)sj1(v��)�j2(uj2�v, ũj2,�)p(yj1�uj1 = v,B)
, u = 1, … , k,
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with	sj1(u��) = ∏k
j�=1
cjj� =1

�j�(uj�t�ũj�t(u),�),	where	the	product	is	extended	to	all	units	 j′	in	the	neigh-

bourhood	of	j	(so	that	cjj� = 1);	for	time	occasion	t = 2, …, T − 1,	the	probability	vector	has	elements

with	sjt(u��) = ∏k
j�=1
cjj� =1

�j�t(uj�t�uj�,t−1, ũj�t(u),�),	which	is	defined	for	t	greater	than	1;	for	the	last	

time	occasion	the	elements	of	r jT	are

We	also	consider	a	version	of	the	algorithm	in	which	components	sj1(u | �)	and	sjt(u|�)	are	
omitted	 from	the	previous	updating	rules;	 in	 fact,	we	experimented	 that	 the	omission	of	
these	quantities	does	not	significanty	affect	the	estimation	results,	while	making	the	esti-
mation	algorithm	much	faster.

•	 Update of the	�u	parameters:	for	u = 2, …, k	we	propose	a	new	parameter	vector	�∗u	which	is	
accepted	with	probability

where	�∗

u	is	the	current	matrix	Γ	with	the	uth	row	substituted	by	�∗u.
•	 Update of the	�u′u	parameters:	for	u�, u = 1, …, k,	with	u ≠ u′,	we	propose	a	new	parameter	

vector	�u′u,	denoted	by	�∗
u�u

,	which	is	accepted	with	probability

where	�∗

u�u
	is	the	matrix	Δ	with	parameter	vector	�u′u	substituted	by	�∗

u�u
.	The	products	in	the	

previous	expression	may	be	restricted	to	the	only	cases	in	which	uj,t−1 = u�.
At	 the	 end	 of	 each	 of	 the	 R	 iterations	 of	 the	 algorithm	 based	 on	 the	 single	 steps	 reported	

above,	we	obtain	values	of	the	parameters	and	latent	variables	drawn	from	the	posterior	distribu-
tion	in	Equation	(2),	which	are	denoted	by	B(r),	�(r),	�(r)	and	U (r),	r = 1, …, R.	A	similar	notation	is	
used	for	each	element	of	these	matrices,	while	we	use	the	short-	hand	notation	�(r)	for	the	overall	
set	of	parameters	and	latent	variables	obtained	at	the	end	of	iteration	r.

The	MCMC	output	may	be	elaborated	in	the	usual	way	to	obtain	point	estimates,	standard	
errors	and	credible	sets	for	the	model	parameters.	To	perform	local	decoding,	that	is,	to	predict	
the	latent	state	of	a	certain	area	in	a	certain	year,	we	adopt	a	maximum	a	posterior	(MAP)	rule;	
the	predicted	latent	state	is

�jt(u�uj,t−1, ũjt��)sjt(u��)�j,t+1(uj,t+1�u, ũj,t+1,�)p (yjt�ujt=u,B)∑k
v=1 �jt(v�uj,t−1, ũjt��)sjt(v��)�j,t+1(uj,t+1�v, ũj,t+1,�)p (yjt�ujt= v,B)

, u=1, … , k,

�jT(u�uj,T−1, ũjT,�)sjT(u��)p (yjT�ujT=u,B)∑k
v=1 �jT(v�uj,T−1, ũjT,�)sjT(v��)p (yjT�ujT= v,B)

, u=1, … , k.

�(�u, �
∗

u) =min

�
1,
p(�∗u)

∏n
j=1 �j(uj1�ũj1,�∗

u)

p(�u)
∏n

j=1 �j(uj1�ũj1,�u)

�
,

�(�u�u, �
∗

u�u
) =min

⎛⎜⎜⎝
1,
p(�∗

u�u
)
∏n

j=1

∏T
t=2 �jt(ujt�uj,t−1, ũjt,�∗

u�u
)

p(�u�u)
∏n

j=1

∏T
t=2 �jt(ujt�uj,t−1, ũjt,�u�u)

⎞⎟⎟⎠
,

ûjt = argmax
u=1,…,k

R∑
r=1

I(u(r)
jt

= u),
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where	I(·)	denotes	the	indicator	function.	Moreover,	to	obtain	a	prediction	for	a	specific	area	and	year,	
corresponding	in	our	application	to	the	prevalence	of	food	insecurity,	we	compute	posterior	averages

which	directly	derive	from	Equation	(1).	Note	that	computing	this	quantity	is	only	possible	for	areas	
with	at	least	one	sampled	individual.	For	areas	without	any	sampled	individual	at	a	certain	time	
occasion,	we	 sample	 individuals	 from	neighbouring	areas.	 In	our	 implementation	we	 sample	as	
many	individuals	as	the	(rounded)	average	number	of	individuals	observed	in	all	of	the	neighbour-
ing	areas.	In	the	few	cases	in	which	this	number	is	also	zero,	we	sample	from	individuals	observed	
in	the	same	area	at	the	closest	measurement	occasion,	breaking	ties	uniformly	at	random.	Note	that	
imputation	is	not	needed	for	decoding,	namely	for	the	prediction	of	the	latent	states	for	each	site	
and	year,	because	site-	specific	covariates	are	usually	known	and/or	time	fixed.	This	is	true	for	our	
specific	application.

4.2 | Label switching

Given	 the	 model	 assumptions,	 a	 label	 switching	 problem	 (Stephens,	 2000)	 clearly	 arises.	 We	
deal	with	this	problem	through	a	post-	processing	algorithm,	along	the	same	lines	as	Marin	et al.	
(2005).	 Post-	processing	 is	 based	 on	 finding	 the	 value	 of	 the	 parameters	 corresponding	 to	 the	
highest	posterior	density	across	all	 the	MCMC	iterations.	This	amounts	 to	 spotting	 the	 set	of	
parameters	among	�(r),	r = 1, …, R,	that	has	the	largest	value	of

which	is	the	product	between	prior	and	likelihood	and	is	an	approximation	of	the	right-	hand	side	of	
expression	(2).	The	corresponding	matrix	containing	the	�u	parameter	vectors	is	denoted	by	B̂.	Then,	
the	value	of	the	parameters	and	latent	variables	of	each	iteration	r	are	re-	examined	by	considering	
each	possible	permutation	of	the	rows	of	B(r)	and	the	latent	states	are	ordered	so	as	to	minimize	the	
Euclidean	distance	between	B(r)	and	B̂.

4.3 | Model choice

For	model	choice	we	rely	on	the	WAIC	(Watanabe,	2010),	in	the	version	proposed	by	Vehtari	
et al.	 (2017),	which	does	not	need	 the	model	marginal	 likelihood	and	requires	a	very	 limited	
computational	burden	in	addition	to	that	of	the	estimation	algorithm,	an	aspect	that	is	of	great	
importance	given	the	very	large	sample	size.	In	particular,	the	method	measures	the	predictive	
accuracy	by	estimating	the	expected	log-	pointwise	predictive	density	for	a	new	data	set	(elpd)	by	
the	difference

q̂jt(u) =
1

mjtR

mjt∑
i=1

R∑
r=1

exp(x�
ijt
�
(r)

u
(r)
jt

)

1 + exp(x�
ijt
�
(r)

u
(r)
jt

)
,

(4)LP(r) = p(B(r))p(�(r))p(�(r))p̃(U (r)|�(r),�(r))p(|U (r),B(r)),

(5)êlpdwaic = l̂pd − p̂waic,
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where,	in	our	context,

is	an	estimate	of	the	log-	pointwise	predictive	density	and

In	the	previous	expressions,	 Ê(p (yjt |�))	 is	simply	the	average	of	p (yjt |�(r))	and	V̂ (logp (yjt |�))	
denotes	 the	 variance	 of	 logp (yjt |�(r))	 across	 the	 R	 MCMC	 iterations.	 An	 advantage	 of	 this	 ap-
proach	is	that	it	also	allows	us	to	take	into	account	the	uncertainty	about	êlpdwaic	in	model	selection.	
Uncertainty	 is	measured	on	 the	basis	of	 the	sample	variance	 (across	 sample	units)	of	 the	single	
addends	 in	expressions	(6)	and	(7).	For	ease	of	reference,	below	we	indicate	 this	quantity	as	 the	
standard	error	of	êlpdwaic.

5 |  DATA ANALYSIS

In	this	section	we	proceed	with	the	analysis	of	the	data	described	in	Section	2.	We	specify	a	neigh-
bouring	structure	based	on	the	four	closest	areas	to	every	area	in	the	same	country,	assuming	
then	a	first-	order	dependence.	Any	two	contiguous	areas	that	are	in	different	countries	are	not	
flagged	as	neighbours,	even	within	the	European	Union.	Moreover,	the	3%	of	observations	are	
removed	overall,	corresponding	to	sample	units	for	which	at	least	one	covariate	is	missing.	For	
these	data	we	estimate	the	proposed	model	for	k = 1, …, 8.	We	let	our	sampler	run	for	R = 50,000	
iterations,	with	a	burn-	in	of	10,000	and	thinning	of	50	iterations.	Convergence	diagnostics	are	
satisfactory	in	all	cases.

In	Table	2	we	report	 summary	 information	 that	may	be	used	 for	model	 selection	 in	 terms	
of	number	of	 latent	states	(k).	The	table	displays	 the	average	of	 (4),	 that	 is,	 the	average	prod-
uct	between	prior	and	likelihood	computed	in	each	sampled	vector	of	parameters,	denoted	by	
LP.	It	also	displays	the	value	of	êlpdwaic,	as	defined	in	Equation	(5),	its	corresponding	standard	

(6)l̂pd =

n∑
j=1

T∑
t=1

log Ê(p (yjt |�))

(7)p̂waic =

n∑
j=1

T∑
t=1

V̂ (logp (yjt |�)).

T A B L E  2 	 Data	analysis	results	for	k = 1, …, 8;	in	bold	the	results	referred	to	the	selected	model

k LP êlpdwaic se(êlpdwaic) Difference

1 −405441.12 −405410.31 406.41 −

2 −360211.34 −350875.67 454.61 54612.89

3 −364339.40 −339406.02 459.65 11540.84

4 −383557.70 −335242.58 461.72 4248.55

5 −398849.34 −333357.25 461.20 2045.17

6 −420178.60 −332006.83 462.17 1433.42

7 −443475.53 −331686.58 461.63 408.68

8 −471498.74 −331432.65 463.11 579.92
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deviation,	denoted	by	 se(êlpdwaic),	 and	 for	k ≥ 2	 the	difference	 in	 terms	of	 êlpdwaic	between	 the	
model	with	k	states	and	the	previous	one.

Based	on	the	results	in	Table	2,	and	accounting	for	the	standard	error	of	WAIC,	we	select	a	
model	with	k = 7	latent	states.	In	order	to	measure	the	goodness-	of-	fit	of	the	selected	model,	we	
consider	the	statistic	equal	to	the	squared	difference	between	the	observed	values	of	the	response	
variable	and	the	predicted	values	 in	the	spirit	of	Copas	(1989).	The	maximum	of	 this	statistic	
equals	the	overall	number	of	observations,	in	case	of	completely	wrong	predictions.	A	posterior	
predictive	 p-	value	 for	 this	 statistic	 is	 computed	 on	 the	 basis	 of	 the	 parameter	 draws	 at	 every	
MCMC	step	as	described,	among	others,	in	Gelman	(2013).	More	precisely,	at	step	r	of	the	algo-
rithm	we	compute	the	following	quantity

on	the	basis	of	the	values	of	the	latent	variables	and	the	regression	parameters	drawn	at	that	step,	and	
denoted	by	u(r)

jt
	and	B(r)	respectively.	At	the	same	step	the	corresponding	simulated	quantity,	denoted	

by	D̂
(r)

,	is	computed	according	to	(8)	with	yijt	substituted	by	 ŷijt,	which	is	drawn	from	a	Bernoulli	
distribution	with	parameter	q(u(r)

jt
,B(r)).	Finally,	the	posterior	predictive	p-	value	is	computed	as	the	

proportion	of	times	that	D̂
(r)

	is	at	least	equal	to	D(r).	For	the	data	at	hand,	and	for	the	selected	model	
with	k = 7	latent	states,	the	average	value	of	D(r)	across	the	MCMC	steps	is	equal	to	107,013.00,	to	be	
compared	with	a	maximum	value	of	729,441	and	with	a	posterior	p-	value	of	0.585.	Being	this	value	
close	to	0.5,	we	then	conclude	that	the	selected	model	has	an	adequate	fit	(Gelman,	2013).

For	reason	of	space,	in	Table	3	we	report	only	posterior	means	and	95%	credibility	intervals	
for	the	regression	parameters.	According	to	these	results,	male	gender	is	protective	in	all	areas,	
confirming	a	need	for	gender	equality	in	access	to	food	(e.g.,	Garcia	&	Wanner,	2017).	Moreover,	
a	clear	negative	effect	of	quantile	of	income	is	seen	everywhere,	and	could	obviously	be	expected.	
The	protective	effect	of	income	is	stronger	in	low	prevalence	areas,	where	access	to	food	is	prob-
ably	difficult	only	for	the	very	poor.

We	also	summarize	the	 latent	distribution	through	average	initial	and	transition	probabili-
ties	in	Table	4.	These	are	obtained	by	averaging	the	individual	and	time-	specific	parameters.	We	
observe	that	while	low	prevalence	areas	form	a	majority,	there	are	also	several	high	prevalence	

(8)D(r) =

n∑
j=1

T∑
t=1

mjt∑
i=1

[yijt−q(u
(r)
jt
,B(r))]2,

T A B L E  4 	 Posterior	means	of	marginal	initial	and	transition	probabilities	for	the	latent	process	Ujt	when	
k = 7

1 2 3 4 5 6 7

Initial	probabilities

0.08 0.17 0.14 0.18 0.17 0.15 0.11

Transition	probabilities

1 0.81 0.05 0.06 0.03 0.03 0.00 0.00

2 0.01 0.92 0.05 0.02 0.00 0.00 0.00

3 0.01 0.05 0.83 0.09 0.02 0.00 0.00

4 0.00 0.00 0.10 0.75 0.10 0.04 0.00

5 0.00 0.00 0.02 0.10 0.77 0.08 0.02

6 0.00 0.00 0.00 0.04 0.07 0.83 0.06

7 0.00 0.00 0.00 0.01 0.04 0.07 0.87
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areas.	Transitions	among	latent	states	are	not	uncommon	but	mostly	to	adjacent	latent	states.	For	
instance,	for	an	area	in	the	high	prevalence	state	5	at	a	certain	time	point	there	is	a	77%	chance	
of	persisting	in	the	same	latent	state,	10%	chance	of	moving	to	the	better	scenario	represented	by	
latent	state	4,	but	it	is	very	unlikely	to	jump	to	latent	states	1	or	2.	Moreover,	the	marginal	tran-
sition	matrix	is	not	symmetric,	with	generally	larger	probabilities	to	move	to	higher	propensity	
of	food	insecurity.	This	is	an	indication	that	the	number	of	areas	with	higher	propensity	to	food	
insecurity	has	increased	over	time.

The	clustering	capability	of	our	approach	can	be	validated	by	obtaining	latent	state	profiles	
with	respect	to	some	endogenous	and	exogenous	variables.	We	proceed	to	do	so	by	grouping	
measurements	according	to	the	predicted	latent	state	of	an	area	at	a	given	time	point,	and	then	
taking	descriptive	statistics.	A	consequence	is	that	areas	in	the	same	latent	state	at	a	given	time	
point	can	be	deemed	to	be	similar	with	respect	to	food	insecurity,	tremendously	reducing	the	
complexity	of	the	problem.	For	instance,	a	country	like	the	United	States	of	America,	which	
is	divided	into	50	areas,	is	finally	clustered	into	only	three	groups	over	the	observation	period.	
A	similar	phenomenon	is	observed	for	most	of	the	countries	considered.	In	Table	5	we	report	
the	average	prevalence	of	 food	insecurity,	 its	standard	deviation,	 the	average	income	and	its	
standard	deviation,	the	average	household	size,	the	proportion	of	households	with	at	least	one	
member	employed	full	time,	and	the	modal	continent	of	areas	in	each	latent	state	at	a	given	
year.	It	is	clear	that	areas	assigned	to	each	latent	state	are	different	with	respect	to	all	variables	
considered.

We	use	Equation	(1)	to	compute	the	state-	subject-	occasion	specific	probability	of	each	sub-
ject	 to	 be	 food	 insecure.	 These	 values	 are	 then	 averaged	 over	 states	 using	 subject-	occasion	
specific	posterior	probabilities	of	each	latent	state,	and	further	averaged	over	area	indicators	
to	obtain	an	area-	occasion	specific	prevalence	of	food	insecurity.	For	imputation	in	cases	in	
which	mjt = 0,	we	proceed	as	described	at	the	end	of	Section	4.1.	We	note	here	that	resulting	
prevalence	 estimates	 only	 minimally	 change	 if	 repeating	 the	 procedure,	 showing	 therefore	
little	sensitivity	to	random	sampling.	Additionally,	prevalence	estimates	agree	also	if	random	
sampling	 is	 replaced	with	a	mean	 imputation	method	 in	which	a	 single	covariate	profile	 is	
fixed	as	the	mean	covariate	profile	from	neighbouring	areas	at	the	same	time	occasion,	and	in	
the	same	area	at	the	previous	and	following	time	occasions.	A	total	of	2141×8	prevalence	esti-
mates	are	therefore	finally	obtained,	and	are	shown	in	Figures	1	and	2.	A	similar	strategy	can	
be	used	for	extrapolation,	obtaining	forecasts	at	time	occasions	that	have	not	been	sampled,	
before	or	after	the	observation	period.

T A B L E  5 	 Profiles	of	latent	states	obtained	by	averaging	measurements	over	areas	assigned	to	each	latent	
state	in	a	given	period

Latent state 1 2 3 4 5 6 7

Prevalence 0.04 0.08 0.13 0.24 0.39 0.57 0.77

sd(Prevalence) 0.03 0.07 0.07 0.08 0.09 0.09 0.10

Income 20543.0 11046.9 9822.3 4998.2 3335.4 2088.9 1216.4

sd(Income) 12718.8 13743.1 8547.6 9344.6 8740.2 2578.4 1936.4

Av.	household	size 2.84 3.53 3.81 4.23 4.83 5.11 5.86

Employed	Full	time 0.60 0.52 0.50 0.46 0.37 0.29 0.17

Modal	continent Europe Asia Asia Asia Asia Africa Africa
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Gallup	uses	in	many	cases	non-	standard	area	boundaries,	and	to	the	best	of	our	knowledge	
raster	data	for	these	areas	are	not	available;	hence	a	map	with	area	boundaries	could	not	be	plot-
ted.	We	proceeded	by	mapping	area	names	to	a	latitude	and	longitude	through	the	Google	Maps	
service.	The	coordinates	given	by	Google	do	not	necessarily	point	to	a	geographical	centre	of	the	
area,	but	can	be	used	to	produce	a	spatial	point	pattern	with	dots	on	those	coordinates	as	done	
in	the	figures.	From	Figures	1	and	2	a	strong	geographical	pattern	is	observed,	with	some	areas	
within	countries	that	differ	slightly	from	the	other	areas	in	the	same	country,	especially	in	Asia	
and	Latin	America.	Additionally,	a	clear	effect	of	the	2008	economic	crisis	can	be	identified	in	
several	areas	of	the	world	and	an	interesting	time	pattern	emerges	for	several	areas	(e.g.	areas	
within	Madagascar).	Finally,	to	corroborate	our	results,	we	also	plot	clusters	of	areas	as	identified	
by	the	posterior	expected	latent	states	in	Figures	3	and	4,	where	areas	with	the	same	colour	(in	
the	same	and	also	in	different	years)	belong	to	the	same	cluster	of	propensity	to	access	to	food.

F I G U R E  1 	 Predicted	prevalence	in	2007,	2008,	2009	and	2010.	One	dot	per	area	is	geolocalized	through	
Google	Maps.	Each	area	is	coloured	from	dark	green	(lowest	predicted	prevalence)	to	dark	red	(highest	predicted	
prevalence)
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In	the	Supplementary	Material	we	give	further	insights	into	the	properties	of	our	model	by	
showing	the	same	maps	obtained	from	raw	data.	A	comparison	clearly	supports	our	claims	about	
the	smoothing	effects	of	our	methodology,	and	the	advantages	of	pooling	information	over	time	
and	space.	Indeed,	maps	of	raw	prevalence	exhibit	for	some	areas	in	some	years	quite	extreme	or	
counter-	intuitive	estimates,	due	to	the	high	uncertainty	associated	with	sampling	a	small	num-
ber	of	subjects	in	an	area.

To	 further	 illustrate,	 we	 restrict	 our	 attention	 to	 certain	 areas	 of	 interest,	 whose	 predicted	
prevalences	 are	 reported	 in	Table	 6.	We	 consider	 Somalia's	 area	 of	 Gedo,	 where	 in	 mid-	2008	
the	third	phase	of	Somali's	civil	war	started	after	withdrawal	of	Ethiopian	troops.	We	observe	
a	clear	 rise	 in	 the	prevalence	as	a	consequence	of	 this	event,	with	 the	area	predicted	 to	have	
switched	from	latent	state	6	to	7	in	2009.	In	contrast,	for	a	stable	and	rich	area	like	Stockholm	

F I G U R E  2 	 Predicted	prevalence	in	2011,	2012,	2013	and	2014.	One	dot	per	area	is	geolocalized	through	
Google	Maps.	Each	area	is	coloured	from	dark	green	(lowest	predicted	prevalence)	to	dark	red	(highest	predicted	
prevalence)
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in	Sweden,	both	prevalence	and	latent	state	are	constant	over	the	observation	period.	Clearly,	
even	in	Stockholm	there	might	be	suburbs	of	poor	people	who	struggle	to	obtain	food,	but	un-
fortunately	 we	 do	 not	 have	 information	 at	 suburb	 level.	 Furthermore,	 the	 prevalence	 in	 the	
area	is	clearly,	comparatively,	low	and	stable.	A	latent	transition	instead	occurred	in	the	area	of	
Minsk,	in	Belarus,	in	2013.	This	is	probably	linked	to	the	fact	that	GDP	in	Belarus	jumped	from	
65.69$	billion	to	75.53$	billion.	Finally,	we	consider	Bhutan's	regions	of	the	capital	Thimphu	and	
Monggar.	Bhutan	quickly	raised	from	one	of	the	most	poor	countries	in	the	world	to	a	safe	and	
healthy	place,	whose	inhabitants	are	happy	and	well	fed.	This	was	an	explicit	political	struggle,	
which	is	well	known	to	have	been	successful.	It	can	be	seen	from	the	results	in	Table	6	that,	while	
this	transition	probably	applies	to	the	entire	country,	it	might	not	have	occurred	simultaneously	
in	all	areas.

F I G U R E  3 	 Predicted	latent	state	in	2007,	2008,	2009	and	2010.	One	dot	per	area	is	geolocalized	through	
Google	Maps.	Each	area	is	coloured	from	light	blue	(first	latent	state)	to	dark	blue	(seventh	latent	state)
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F I G U R E  4 	 Predicted	latent	state	in	2011,	2012,	2013	and	2014.	One	dot	per	area	is	geolocalized	through	
Google	Maps.	Each	area	is	coloured	from	light	blue	(first	latent	state)	to	dark	blue	(seventh	latent	state)

T A B L E  6 	 Predicted	prevalence	and	latent	state	(in	parentheses)	for	selected	areas

Area 2007 2008 2009 2010 2011 2012 2013 2014

Gedo	(Somalia) 0.51	(6) 0.51	(6) 0.72	(7) 0.75	(7) 0.71	(7) 0.71	(7) 0.72	(7) 0.73	(7)

Stockholm	(Sweden) 0.01	(1) 0.01	(1) 0.01	(1) 0.01	(1) 0.01	(1) 0.01	(1) 0.01	(1) 0.01	(1)

Minsk	(Belarus) 0.20	(4) 0.19	(4) 0.20	(4) 0.20	(4) 0.20	(4) 0.20	(4) 0.09	(3) 0.10	(3)

Thimphu	(Bhutan) 0.04	(1) 0.03	(1) 0.04	(1) 0.04	(1) 0.03	(1) 0.04(1) 0.03	(1) 0.03	(1)

Monggar	(Bhutan) 0.11	(3) 0.10	(3) 0.10	(3) 0.12	(3) 0.10	(3) 0.10	(3) 0.15	(3) 0.05	(1)
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6 |  CONCLUSIONS

We	have	presented	a	flexible	spatio-	temporal	model	which	is	based	on	certain	conditional	in-
dependence	assumptions.	On	one	hand,	the	use	of	a	discrete	latent	variable	allows	us	to	model	
unobserved	 heterogeneity	 with	 reduced	 parametric	 assumptions,	 as	 even	 continuous	 mixing	
distributions	 can	 be	 expected	 to	 be	 well	 approximated	 by	 a	 discrete	 distribution	 (see,	 for	 in-
stance,	Bartolucci	&	Farcomeni,	2009,	on	this	point).	On	the	other	hand,	it	is	possible	to	cluster	
several	(here,	2141	×	8)	measurements	into	a	few	(here,	k = 7)	groups.	Our	model	provides	also	
a	comprehensive	approach	to	assess	relationships	between	access	to	food	and	certain	predictors	
at	global	level.	Time	dynamics	are	also	easily	evaluated.	The	most	useful	feature	of	our	approach	
is	the	fact	that	we	can	obtain	prevalence	estimates	at	the	area	level	by	pooling	information	over	
neighbours	and	time	points.	This	is	especially	useful	for	areas	without	any	sampled	subjects	at	a	
certain	wave,	and	in	general	it	can	be	expected	to	reduce	the	mean	squared	error	of	predictions.	
Indeed,	while	observed	prevalence	at	area	level	can	exhibit	patterns	that	might	only	be	due	to	
sampling	variability,	our	predictions	are	often	stable	and	interpretable.

To	the	best	of	our	knowledge,	prevalence	estimates	are	routinely	computed	only	at	country	and	
region	(e.g.	continent)	level,	and	this	is	the	first	study	to	present	reliable	estimates	at	a	smaller	spa-
tial	scale.	These	estimates	are	clearly	useful	for	the	development	of	appropriate	strategies	to	fight	
poverty.	Given	the	fact	that	high	variability	can	be	expected	for	certain	countries,	we	are	confident	
that	the	lower	spatial	aggregation	we	provide	can	be	very	useful	for	policy	makers	and	program	eval-
uation.	The	complete	results	are	available	upon	request.	It	shall	be	mentioned,	as	a	further	evidence,	
that	a	strong	agreement	can	be	found	between	our	prevalence	estimates	(at	national	level)	and	the	
official	prevalence	estimate	for	food	insecurity	officially	published	in	FAO	et	al.	(2019).

Finally,	for	simplicity	in	this	presentation	we	have	ignored	sampling	weights	computed	within	
the	GWP	poll.	Indeed,	we	have	tried	also	fitting	simplified	versions	of	the	proposed	model	in	which	
sampling	weights	were	taken	into	account.	Results	were	very	similar,	with	the	model	with	uniform	
weights	being	more	stable	in	terms	of	convergence	of	the	MCMC.	It	shall	be	noted	that	this	does	
not	modify	our	results	in	any	substantial	respect.	Moreover,	given	the	very	large	sample	size	and	the	
complexity	of	the	data	structure,	which	has	both	a	spatial	and	a	temporal	dimension,	we	adopt	an	
estimation	algorithm	that	relies	on	an	approximation	of	the	distribution	of	the	latent	variables	given	
the	model	parameters	that	we	do	not	expect	to	strongly	affect	results.	This	approximation,	which	
relies	on	the	use	of	a	pseudo-	probability	rather	than	the	true	probability	of	the	latent	variables,	is	not	
uncommon	in	spatial	statistics.	Nevertheless,	further	research	could	be	devoted	to	a	methodological	
study	of	the	impact	of	this	approximation,	which	is	expected	to	also	affect	the	performance	of	the	
Watanabe–	Akaike	information	criterion	(Watanabe,	2010)	that	we	use	for	model	selection,	and	it	
is	a	way	to	by-	pass	cumbersome	computation	of	the	marginal	likelihood.	A	simulation	study	of	the	
behaviour	of	this	selection	criterion	specifically	for	the	model	proposed	in	this	paper	could	be	also	
of	interest.	Possible	extensions	also	include	the	case	of	time-	varying	number	of	latent	states	as	in	
Anderson	et al.	(2019),	and	count	data	as	in	Bartolucci	and	Farcomeni	(2021).
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