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Abstract
In order to analyse worldwide data about access to food, 
coming from a series of Gallup's world polls, we pro-
pose a hidden Markov model with both a spatial and 
a temporal component. This model is estimated by an 
augmented data MCMC algorithm in a Bayesian frame-
work. Data are referred to a sample of more than 750 
thousand individuals in 166 countries, widespread in 
more than two thousand areas, and cover the period 
2007–2014. The model is based on a discrete latent space, 
with the latent state corresponding to a certain area and 
time occasion that depends on the states of neighbour-
ing areas at the same time occasion, and on the previous 
state for the same area. The latent model also accounts 
for area-time-specific covariates. Moreover, the binary 
response variable (access to food, in our case) observed 
at individual level is modelled on the basis of individual-
specific covariates through a logistic model with a vec-
tor of parameters depending on the latent state. Model 
selection, in particular for the number of latent states, is 
based on the Watanabe–Akaike information criterion. 
The application shows the potential of the approach in 
terms of clustering the areas, data smoothing and pre-
diction of prevalence for areas without sample units and 
over time.
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1  |   INTRODUCTION

Data with both spatial and temporal dimensions are nowadays produced in many fields, and 
require sophisticated statistical models and inferential methods to be analysed. In this paper 
we focus on data deriving from Gallup's world poll (GWP) surveys that, each year, are based on 
samples of individuals from several countries and territories. Gallup is an American firm that, 
since 1935, conducts public polls worldwide. GWP data are commonly used to investigate socio-
economic issues, especially concerning aspects related to well-being (e.g. Deaton, 2008; Frongillo 
et al., 2017; Powdthavee et al., 2017).

Among the aspects examined by the GWP questionnaire, we focus in particular on lack 
of access to food, a theme that nowadays is gathering much interest in the study of poverty 
(e.g. Bhattacharya et  al., 2004; Mahadevan & Hoang, 2016; Nord et  al., 2008; Rose, 1999; 
Smith et al., 2017; Suryanarayana & Silva, 2007). This aspect is observed through a binary 
response variable that is individual specific and indicates whether the household was not 
able to afford food within the past 12 months. The available data are collected in 166 world 
countries and territories for the period 2007–2014 (eight waves). In our survey, each country 
is suitably divided in areas, for a total of more than two thousand areas. A limitation of the 
world poll is that, with simple models, accurate estimates can be aggregated at most at the 
country/territory level. It is well known that dramatic heterogeneity can be present within 
many countries, where certain regions can be at low risk of poverty, while other regions of 
the same country can be at high risk. It would be therefore useful for politicians, stakehold-
ers, charities and non-governmental organizations to have access to estimates with a greater 
spatial disaggregation. Formally, our main interest is in estimating prevalence of people that, 
at area level, are at least occasionally not able to afford food for themselves or their family. 
We do so by pooling spatial and temporal information, in order to reduce variability due to 
the possible small number of individuals sampled in the specific area of interest. A series of 
covariates are also available for every individual which will be used to further decrease the 
mean squared error of the estimates. The geographic subregion of each country is our target 
for producing estimates.

For the analysis of such data we propose a spatio-temporal approach based on the assumption 
that the response variable follows a logistic model including the individual-specific covariates 
and depending on vectors of regression coefficients that are area and wave specific. This is for-
malized by associating a discrete latent variable (with a finite number of categories) to every area 
and wave. Each category corresponds to a different vector of regression coefficients. These latent 
variables are assumed to follow a Markov model with spatial and time dependence. In partic-
ular, every area- and wave-specific latent variable is assumed to depend on the latent variables 
associated with the neighbours at the same time occasion and to the latent variable for the same 
area at the previous time occasion. The latent state can be interpreted in terms of area- and wave-
specific propensity to lack of access to food. Similar models have been used so far, to the best of 
our knowledge, only to tackle spatial or temporal aspects separately (e.g. Dotto et al., 2019; Li 
Donni & Marino, 2018).

The assumptions mentioned above give rise to a hierarchical model that may be seen as a tem-
poral extension of a hidden Markov field model (Green & Richardson, 2002; Qian & Titterington, 
1991; Spezia et al., 2018), with covariates; or as a spatial extension of a hidden Markov model 
(Bartolucci & Farcomeni, 2015; Bartolucci et al., 2013, 2014; Zucchini et al., 2017), again with 
covariates. As in many other approaches, in formulating the assumed latent structure, we take 
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inspiration from the seminal paper of Besag (1986). For spatio-temporal approaches related to the 
proposed one, but applied in different fields, see Wei and Li (2008), Ailliot et al. (2009), Lawson 
(2013 Ch. 12) and Lin et al. (2015).

We adopt a Bayesian approach for model estimation. We refer the reader to Marshall (1991) 
for an introduction to spatial clustering, and to Best et al. (2005) and Lawson (2013) specif-
ically for Bayesian models for spatial (disease) mapping. The proposed model is estimated 
by a Markov chain Monte Carlo (MCMC) algorithm based on data augmentation (Tanner 
& Wong, 1987), as we treat the latent variables on the same footing as the model parame-
ters that are updated at each iteration of the algorithm. We also deal with label switching 
(Stephens, 2000), by post-processing the MCMC output, and model selection, on the basis of 
the Watanabe–Akaike information criterion (WAIC; Watanabe, 2010), so that the model mar-
ginal likelihood is not necessary. R code with an implementation of our approach is available 
from https://github.com/afarc​ome/LMsae. This implementation includes Fortran routines 
to speed up the computation given the very large sample size, which is over 750 thousand 
individuals.

The main feature of the proposed approach is that it allows us to cluster country areas into a finite 
number of groups in a dynamic fashion. Exploiting the dependence in space and time of the latent 
variables, this clustering is possible also when, for a specific wave, data are not available in a certain 
area because no individuals have been sampled. Moreover, it is possible to predict the prevalence of 
at least occasional lack of access to food for every area and wave. The prediction is a smoothed (less 
noisy) version of the observed one, when data are observed, or a pure prediction, when no data are 
observed. As we illustrate in the application, this allows us to make nice graphical representations 
in the form of dynamic maps of the characteristic of interest. The approach here proposed may be 
easily extended to deal with different situations when we observe more response variables, for each 
individual, even if these variables are mixed discrete and continuous.

The paper is organized as follows. In the next section we provide a description of the available 
data. The proposed model is illustrated in Section 3, whereas Bayesian inference based on the 
MCMC algorithm is described in Section 4. The results of the analysis are described in Section 5 
and last section reports some conclusions.

2  |   DATA DESCRIPTION

The GWP is a survey conducted by interviewing nationally representative samples of the adult 
population (aged 15 and older) in almost every world country or territory. The sampling is re-
peated each year, so that different individuals are interviewed within each country at different 
waves. The survey covers a range of topics including family economics, employment, human 
development and well-being. About 1,000 individuals for every country are included each year 
by Gallup, with some variability and the exception of about 3,000 for India and 5,000 for China. 
Some oversampling has occurred, for example in major cities, in certain areas. See Gallup or-
ganization (2020) for specific details. Sampling involves a random-digit-dial telephone survey in 
countries where more than 80% of the population has landline phones, and area frame designs 
for face-to-face interviewing otherwise.

In our final data set we include a total of 760,282 subjects, essentially representative of the 
world population for the years from 2007 to 2014. Our aim is to investigate the area-time-specific 
prevalence of subjects who replied ‘Yes’ to the following question:

https://github.com/afarcome/LMsae
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‘Have there been times in the past 12 months when you did not have enough money 
to buy food that you or your family needed?’

Over the period, 198,788 subjects replied ‘Yes’ to this question (coded as 1 in our analysis and 
tagged as ‘food insecure’ in the rest of the paper) and the remaining replied ‘No’ (coded as 0 in 
our analysis and tagged as ‘food secure’ in the rest of the paper). The ‘food insecure’ terminology 
is used only for simplicity: it shall be here noted that food insecurity is a broader concept than the 
mere lack of money to buy food, and that it shall therefore be kept in mind that our target is simply 
the prevalence of subjects who at least occasionally lack the money to buy food for them or their 
family. Before proceeding further, we must warn that some measurement error might be influ-
encing the results. First of all, some subjects might not reply sincerely to this sensitive question. 
Additionally, given the way it is formulated, there might be some recall bias. Other issues involve 
measurement invariance and intended meaning. Some measurement errors might arise from the 
fact that the question at hand is asked to people of different cultures, speaking different languages. 
In order to minimize translation issues Gallup prepares and validates questionnaires in English, 
French and Spanish. A professional translator then uses one or more of the main questionnaires 
to prepare that in the language spoken in the sampled household. A second professional translator 
compares original and translated questionnaire, and suggests refinements.

The overall sample prevalence is 26.1%. This prevalence shows a strong spatial and temporal 
heterogeneity. In the upper panel of Table 1 we show, for illustration, raw prevalence estimates 
stratified by continent and year. In the Supplementary Material we give a complete graphical 
account reporting maps of raw and predicted prevalence estimates.

It is obvious that a very large spatial heterogeneity exists for the proportion of food insecure 
in the world, and also (and possibly more interesting) temporal variability. In addition to identi-
fying a country for each respondent, Gallup also releases information on the main subregion of 
residence within the country. Each country is divided in a variable number of subregions, with 
several countries having more than 25 subregions (e.g. Russia, China, India, Brazil, etc.). Clearly, 
some areas might not have been sampled in certain years. In the bottom panel of Table 1 we show 
the number of missing areas, by continent and wave.

Our main objective in this study is to obtain a reliable (‘smoothed’) estimate of prevalence of 
food insecure within each country-specific area, by pooling information over neighbouring areas 
and time points. We end up working with 2,141 areas that cover all continents, with the exception 
of Antarctica.

In order to pool information we also use two different sets of covariates. Covariates used 
at site level are latitude, longitude, the absolute value of latitude and indicator variables for the 
continent (using the classification in six continents that distinguishes between North and South 
America). In this way we model fixed effects with the logic that geographically closer areas tend 
to be similar and at the same time we account for more or less globally disadvantaged world 
regions and the general effect of distance from the equator. We recall that these covariates 
affect the distribution of the area-specific latent variables that may be used to cluster directly 
these areas in distinct groups. At subject level we will use age (median: 40 years, inter-quartile 
range: 28), squared age, gender (46% females) and quintiles of equivalized disposable income 
within the country included by suitable indicator variables. These can be expected to be related 
to access to food, at least in some countries/territories. The average age stratified by continent 
and wave is reported in the second upper panel of Table 1, while in the third panel we report 
the stratified proportion of females. We observe that age of the respondents is slightly variable 
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over time, with more substantial differences between continents. Gender proportions do not 
show a strong variability, as could be expected.

3  |   SET UP AND MODEL ASSUMPTIONS

Let n denote the number of sites (areas) and let mjt be the number of sampled units in site j at 
occasion t, with j = 1, …, n and t = 1, …, T. Note that, by design, unit i in site j at occasion t is in 
general different from unit i in the same site j at another occasion t′. For each of these units we 
observe a column vector of covariates xijt and a binary outcome yijt; all response variables are 
collected in the set  having 

∑n
j=1

∑t
t=1mjt elements. In order to maintain a concise exposition, 

we use the same symbol for a random variable or one of its realizations. The same convention 
will be used for random vectors and matrices.

We also observe, at site level, column vectors of covariates denoted by zjt. The n-dimensional 
binary symmetric matrix C is used to identify neighbouring areas, with cjj� = 1 if site j′ is a neigh-
bour of site j on a lattice that is not necessarily regular. The proposed multilevel spatial–temporal 
model is based on latent variable ujt for every site j and time occasion t. These latent variables, 
collected in the n × T matrix U, are discrete with k support points, labelled from 1 to k. A crucial 

T A B L E  1   Empirical statistics stratified by continent and year. First panel: prevalence of food insecure. 
Second panel: average age. Third panel: proportion of females. Fourth panel: number of areas not sampled

2007 2008 2009 2010 2011 2012 2013 2014

Prevalence of 
food insecure

Africa 0.49 0.53 0.42 0.43 0.43 0.43 0.52 0.51

Americas 0.07 0.08 0.10 0.36 0.35 0.33 0.37 0.33

Asia 0.25 0.23 0.22 0.23 0.21 0.22 0.26 0.26

Europe 0.20 0.13 0.18 0.15 0.12 0.11 0.17 0.14

Oceania 0.11 0.11 0.11 0.10 0.12 0.14 0.09 0.10

Average age Africa 34.11 34.26 34.93 35.05 35.65 35.61 35.43 35.32

Americas 52.84 49.00 50.40 41.75 42.40 42.12 42.39 44.02

Asia 39.16 40.25 38.00 38.76 38.87 39.62 39.74 41.27

Europe 44.57 48.27 48.20 49.01 50.54 50.98 47.95 48.44

Oceania 44.10 44.32 46.95 50.81 50.29 49.21 53.20 54.90

Percentage of 
females

Africa 0.51 0.52 0.51 0.52 0.52 0.50 0.52 0.50

Americas 0.47 0.43 0.45 0.44 0.43 0.43 0.43 0.44

Asia 0.45 0.46 0.48 0.48 0.47 0.47 0.47 0.49

Europe 0.40 0.43 0.41 0.40 0.43 0.44 0.43 0.46

Oceania 0.49 0.49 0.44 0.38 0.38 0.43 0.41 0.42

Number of areas 
not sampled

Africa 618 503 480 399 353 349 351 0

Americas 309 301 300 87 88 90 52 0

Asia 424 239 210 205 156 112 61 6

Europe 576 452 403 336 275 264 273 0

Oceania 31 0 31 0 0 0 1 0
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assumption is that, given the covariates and the latent variables, the response variables yijt are 
conditionally independent with conditional Bernoulli distribution, that is,

where the success probability is formulated according to the logistic model

based on regression parameters �u depending on the latent state for site j at occasion t. These regres-
sion parameters are collected in the matrix B = (�1, …, �k)

�. Vectors xijt are assumed to be known, 
and include an initial element for intercept. A similar assumption is adopted for the second-level 
covariates zjt. The success probabilities will also be denoted by qijt(u, B) to stress their dependence 
on the parameters in B.

Regarding the distribution of the latent variables, we assume a Markov chain that accounts for 
the spatial structure. In particular let ũjt be the vector of latent variables uj′t if j′ is a neighbour of 
j, namely cjj� = 1. Taking inspiration from the auto-logistic model (Besag, 1974), we assume that 
the initial probabilities of the hidden Markov chain, conditional on the states of the neighbours, 
are equal to

where the denominator is the normalizing constant that obviously does not vary with u and, in gen-
eral, zjt(ũjt) = (z�

jt
, f (ũjt)

�)�, with f (ũjt) being a column vector summarizing the states of the neigh-
bours of site j at occasion t. In our implementation we assume that f (ũjt) is a k-dimensional vector 
with the uth element equal to the proportion of neighbours having latent state equal to u and zjt(ũjt) 
is specified so as to avoid identifiability problems.

For the column vector �j(ũj1) = (�j(1|ũj1), …, �j(k|ũj1))� we use an overall parametrization 
based on the matrix notation that simplifies the implementation of the estimation algorithm. 
Including all �u vectors in the matrix � = (�2, …, �k)

�, we have that 

where in general Mu is an identity matrix of dimension k, without the uth column. In the 
following we also use the notation �j(u|ũj1, �) for the elements of this vector to stress their 
dependence on Γ.

Regarding the transition probabilities we assume a similar parametrization, but using the 
starting state as reference category, that is,

yijt|ujt ∼ Bin(1, qijt(ujt)), ujt = 1, …, k,

(1)qijt(u) = p(yijt = 1|ujt = u) =
exp(x�

ijt
�u)

1 + exp(x�
ijt
�u)

,

�j(u�ũj1) =p(uj1=u�ũj1)
=

1

1+
∑k

v=2 exp(zj1(ũj1)
��v)

�
1, u=1,

exp(zj1(ũj1)
��u), u=2, … , k,

�j
(
ũj1

)
=

1

1�exp(M1�zj1(ũj1))
exp(M1�zj1(ũj1)),

�jt(u�u�, ũjt) =p(ujt=u�uj,t−1=u�, ũjt)
=

1

1+
∑k

v=1
v≠u�

exp(zjt(ũjt)
��u�v)

�
1, u=u�,

exp(zjt(ũjt)
��u�u), u=1, …, k, u ≠ u�,
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for u� = 1, …, k. Note that each area-time-specific latent state depends on the latent states of the 
neighbours for the same time occasion (taking again inspiration from the auto-logistic model) and on 
the previous latent state for the same site (as in a standard hidden Markov model). Also in this case we 
can adopt a matrix formulation. Including the elements in the u′th row of the transition matrix, that 
is, �jt(u|u�, ũjt), u = 1, …, k, in the vector �jt(u�, ũjt) and with �u� = (�u�1, …, �u�, u�−1, �u�,u�+1, �u�k)

� , 
we have that

We also denote by Δ the matrix collecting parameter vectors �u′u for u�, u = 1, …, k, with u ≠ u′, 
and in the following we use the notation �jt(u|u�, ũ, �) for the elements of the above vector.

Regarding prior distributions, we assume that all parameters are independent with

where 0 and I are a column vector of zeros and an identity matrix of suitable dimension, respectively, 
and �2

�
, �2� and �2

�
 are variance parameters that in our application are fixed at large values, such as 100. 

It shall be noted that in our application we did not observe relevant sensitivity to these prior inputs.

4  |   BAYESIAN INFERENCE

Bayesian inference is based on the posterior distribution of model parameters and latent param-
eters, which may be expressed as 

where we explicitly indicate the dependence of the distributions of the parameters and we use the 
usual proportionality symbol ∝ . In the previous expression, p(B), p(Γ) and p(Δ) refer to the prior 
distribution of the corresponding parameters and have density functions 

The distribution of the set of latent variables Ujt, collected in matrix U, cannot be computed exactly. 
For computational convenience this distribution is substituted with

�it(u
�, ũjt) =

1

1�exp(Mu��u�zjt(ũjt))
exp(Mu��u�zjt(ũjt)), u� = 1, …, k.

�u ∼N(0, �2
�
I), u=1, …, k,

�u ∼N(0, �2�I), u=2, …, k,

�u�u ∼N(0, �2
�
I), u� =1, …, k, u=2, …, k,

(2)p(B,�,�,U |) ∝ p(B)p(�)p(�)p(U |�,�)p(|U ,B),

p(B) =

k∏
u=1

p(�u),

p(�) =

k∏
u=2

p(�u),

p(�) =

k∏
u�=1

k∏
u=1
u≠u�

p(�u�u).

(3)p̃(U |�, �) =
n∏
j=1

[
�(uj1|ũj1,�)

T∏
t=2

�(ujt|uj,t−1, ũjt ,�)
]
,
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which is a pseudo-probability in the sense of Besag (1975). For a discussion about this ap-
proximation for the case of cross-sectional spatial data see, among others, Spezia et al. (2018). 
These authors also rely on a method to avoid the approximation of p(U|Γ, Δ) that is based on 
auxiliary Monte Carlo steps within the estimation algorithm. In the present context, which 
is more complex due to the presence of data with both a spatial and temporal dimension, we 
prefer to directly use pseudo-probability (3) also because the very large size of the sample we 
analyse requires to limit the computational burden of the estimation algorithm. Moreover, the 
use of pseudo-distributions in place of the corresponding true distributions is not uncommon 
in spatial statistics and we do not expect it to strongly affect the estimation results. See also 
Spezia et al. (2017) for other examples of the use of pseudo-probabilities in related spatial con-
texts and Friel and Pettitt (2004), Friel et al. (2009) and Everitt (2012) for a discussion about 
the implication of their use.

Finally, regarding the conditional distribution of the response variables yijt collected in the set 
, we have

where yjt is the vector of the mjt individual outcomes yijt at time t in site j.

4.1  |  Markov chain Monte Carlo algorithm

In order to approximate the posterior distribution of model parameters, we rely on an MCMC 
algorithm, with an augmented parameter space. The algorithm is based on repeating a series of 
single steps for a suitable number of iterations R. The single steps of the proposed algorithm are 
described in the following.

•	 Update of the �u parameters: For u = 1, …, k, we propose �∗

u from distribution N(�u, �2�I), 
namely a multivariate normal distribution centred on the current parameter vector and with 
variance depending on �2

�
. The proposed parameter vector is accepted with probability

where B∗

u is obtained by substituting the uth column of the current matrix B with �∗

u.
•	 Update of the latent variables ujt: Using a Gibbs sampler, for j = 1, …, n and t = 1, …, T, we 

draw ujt from a categorical distribution with vector of probabilities r jt obtained in a different 
way depending on the specific time occasion t. For the first time occasions, the elements of r j1 
are

p(|U ,B) =
n∏
j=1

T∏
t=1

p (yjt|ujt,B),

p(yjt|ujt,B) =
mjt∏
i=1

q (ujt,B)
yijt[1−q(ujt,B)]

1−yijt ,

�(�∗

u,�u) =min

(
1,
p(�∗

u)p(|U ,B∗

u)

p(�u)p(|U ,B)
)
,

�j(u�ũj1,�)sj1(u��)�j2(uj2�u, ũj2,�)p(yj1�uj1 = u,B)
∑k

v=1 �j(v�ũj1,�)sj1(v��)�j2(uj2�v, ũj2,�)p(yj1�uj1 = v,B)
, u = 1, … , k,
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with sj1(u��) = ∏k
j�=1
cjj� =1

�j�(uj�t�ũj�t(u),�), where the product is extended to all units j′ in the neigh-

bourhood of j (so that cjj� = 1); for time occasion t = 2, …, T − 1, the probability vector has elements

with sjt(u��) = ∏k
j�=1
cjj� =1

�j�t(uj�t�uj�,t−1, ũj�t(u),�), which is defined for t greater than 1; for the last 

time occasion the elements of r jT are

We also consider a version of the algorithm in which components sj1(u | �) and sjt(u|�) are 
omitted from the previous updating rules; in fact, we experimented that the omission of 
these quantities does not significanty affect the estimation results, while making the esti-
mation algorithm much faster.

•	 Update of the �u parameters: for u = 2, …, k we propose a new parameter vector �∗u which is 
accepted with probability

where �∗

u is the current matrix Γ with the uth row substituted by �∗u.
•	 Update of the �u′u parameters: for u�, u = 1, …, k, with u ≠ u′, we propose a new parameter 

vector �u′u, denoted by �∗
u�u

, which is accepted with probability

where �∗

u�u
 is the matrix Δ with parameter vector �u′u substituted by �∗

u�u
. The products in the 

previous expression may be restricted to the only cases in which uj,t−1 = u�.
At the end of each of the R iterations of the algorithm based on the single steps reported 

above, we obtain values of the parameters and latent variables drawn from the posterior distribu-
tion in Equation (2), which are denoted by B(r), �(r), �(r) and U (r), r = 1, …, R. A similar notation is 
used for each element of these matrices, while we use the short-hand notation �(r) for the overall 
set of parameters and latent variables obtained at the end of iteration r.

The MCMC output may be elaborated in the usual way to obtain point estimates, standard 
errors and credible sets for the model parameters. To perform local decoding, that is, to predict 
the latent state of a certain area in a certain year, we adopt a maximum a posterior (MAP) rule; 
the predicted latent state is

�jt(u�uj,t−1, ũjt��)sjt(u��)�j,t+1(uj,t+1�u, ũj,t+1,�)p (yjt�ujt=u,B)∑k
v=1 �jt(v�uj,t−1, ũjt��)sjt(v��)�j,t+1(uj,t+1�v, ũj,t+1,�)p (yjt�ujt= v,B)

, u=1, … , k,

�jT(u�uj,T−1, ũjT,�)sjT(u��)p (yjT�ujT=u,B)∑k
v=1 �jT(v�uj,T−1, ũjT,�)sjT(v��)p (yjT�ujT= v,B)

, u=1, … , k.

�(�u, �
∗

u) =min

�
1,
p(�∗u)

∏n
j=1 �j(uj1�ũj1,�∗

u)

p(�u)
∏n

j=1 �j(uj1�ũj1,�u)

�
,

�(�u�u, �
∗

u�u
) =min

⎛⎜⎜⎝
1,
p(�∗

u�u
)
∏n

j=1

∏T
t=2 �jt(ujt�uj,t−1, ũjt,�∗

u�u
)

p(�u�u)
∏n

j=1

∏T
t=2 �jt(ujt�uj,t−1, ũjt,�u�u)

⎞⎟⎟⎠
,

ûjt = argmax
u=1,…,k

R∑
r=1

I(u(r)
jt

= u),
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where I(·) denotes the indicator function. Moreover, to obtain a prediction for a specific area and year, 
corresponding in our application to the prevalence of food insecurity, we compute posterior averages

which directly derive from Equation (1). Note that computing this quantity is only possible for areas 
with at least one sampled individual. For areas without any sampled individual at a certain time 
occasion, we sample individuals from neighbouring areas. In our implementation we sample as 
many individuals as the (rounded) average number of individuals observed in all of the neighbour-
ing areas. In the few cases in which this number is also zero, we sample from individuals observed 
in the same area at the closest measurement occasion, breaking ties uniformly at random. Note that 
imputation is not needed for decoding, namely for the prediction of the latent states for each site 
and year, because site-specific covariates are usually known and/or time fixed. This is true for our 
specific application.

4.2  |  Label switching

Given the model assumptions, a label switching problem (Stephens, 2000) clearly arises. We 
deal with this problem through a post-processing algorithm, along the same lines as Marin et al. 
(2005). Post-processing is based on finding the value of the parameters corresponding to the 
highest posterior density across all the MCMC iterations. This amounts to spotting the set of 
parameters among �(r), r = 1, …, R, that has the largest value of

which is the product between prior and likelihood and is an approximation of the right-hand side of 
expression (2). The corresponding matrix containing the �u parameter vectors is denoted by B̂. Then, 
the value of the parameters and latent variables of each iteration r are re-examined by considering 
each possible permutation of the rows of B(r) and the latent states are ordered so as to minimize the 
Euclidean distance between B(r) and B̂.

4.3  |  Model choice

For model choice we rely on the WAIC (Watanabe, 2010), in the version proposed by Vehtari 
et al. (2017), which does not need the model marginal likelihood and requires a very limited 
computational burden in addition to that of the estimation algorithm, an aspect that is of great 
importance given the very large sample size. In particular, the method measures the predictive 
accuracy by estimating the expected log-pointwise predictive density for a new data set (elpd) by 
the difference

q̂jt(u) =
1

mjtR

mjt∑
i=1

R∑
r=1

exp(x�
ijt
�
(r)

u
(r)
jt

)

1 + exp(x�
ijt
�
(r)

u
(r)
jt

)
,

(4)LP(r) = p(B(r))p(�(r))p(�(r))p̃(U (r)|�(r),�(r))p(|U (r),B(r)),

(5)êlpdwaic = l̂pd − p̂waic,
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where, in our context,

is an estimate of the log-pointwise predictive density and

In the previous expressions, Ê(p (yjt |�)) is simply the average of p (yjt |�(r)) and V̂ (logp (yjt |�)) 
denotes the variance of logp (yjt |�(r)) across the R MCMC iterations. An advantage of this ap-
proach is that it also allows us to take into account the uncertainty about êlpdwaic in model selection. 
Uncertainty is measured on the basis of the sample variance (across sample units) of the single 
addends in expressions (6) and (7). For ease of reference, below we indicate this quantity as the 
standard error of êlpdwaic.

5  |   DATA ANALYSIS

In this section we proceed with the analysis of the data described in Section 2. We specify a neigh-
bouring structure based on the four closest areas to every area in the same country, assuming 
then a first-order dependence. Any two contiguous areas that are in different countries are not 
flagged as neighbours, even within the European Union. Moreover, the 3% of observations are 
removed overall, corresponding to sample units for which at least one covariate is missing. For 
these data we estimate the proposed model for k = 1, …, 8. We let our sampler run for R = 50,000 
iterations, with a burn-in of 10,000 and thinning of 50 iterations. Convergence diagnostics are 
satisfactory in all cases.

In Table 2 we report summary information that may be used for model selection in terms 
of number of latent states (k). The table displays the average of (4), that is, the average prod-
uct between prior and likelihood computed in each sampled vector of parameters, denoted by 
LP. It also displays the value of êlpdwaic, as defined in Equation (5), its corresponding standard 

(6)l̂pd =

n∑
j=1

T∑
t=1

log Ê(p (yjt |�))

(7)p̂waic =

n∑
j=1

T∑
t=1

V̂ (logp (yjt |�)).

T A B L E  2   Data analysis results for k = 1, …, 8; in bold the results referred to the selected model

k LP êlpdwaic se(êlpdwaic) Difference

1 −405441.12 −405410.31 406.41 −

2 −360211.34 −350875.67 454.61 54612.89

3 −364339.40 −339406.02 459.65 11540.84

4 −383557.70 −335242.58 461.72 4248.55

5 −398849.34 −333357.25 461.20 2045.17

6 −420178.60 −332006.83 462.17 1433.42

7 −443475.53 −331686.58 461.63 408.68

8 −471498.74 −331432.65 463.11 579.92
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deviation, denoted by se(êlpdwaic), and for k ≥ 2 the difference in terms of êlpdwaic between the 
model with k states and the previous one.

Based on the results in Table 2, and accounting for the standard error of WAIC, we select a 
model with k = 7 latent states. In order to measure the goodness-of-fit of the selected model, we 
consider the statistic equal to the squared difference between the observed values of the response 
variable and the predicted values in the spirit of Copas (1989). The maximum of this statistic 
equals the overall number of observations, in case of completely wrong predictions. A posterior 
predictive p-value for this statistic is computed on the basis of the parameter draws at every 
MCMC step as described, among others, in Gelman (2013). More precisely, at step r of the algo-
rithm we compute the following quantity

on the basis of the values of the latent variables and the regression parameters drawn at that step, and 
denoted by u(r)

jt
 and B(r) respectively. At the same step the corresponding simulated quantity, denoted 

by D̂
(r)

, is computed according to (8) with yijt substituted by ŷijt, which is drawn from a Bernoulli 
distribution with parameter q(u(r)

jt
,B(r)). Finally, the posterior predictive p-value is computed as the 

proportion of times that D̂
(r)

 is at least equal to D(r). For the data at hand, and for the selected model 
with k = 7 latent states, the average value of D(r) across the MCMC steps is equal to 107,013.00, to be 
compared with a maximum value of 729,441 and with a posterior p-value of 0.585. Being this value 
close to 0.5, we then conclude that the selected model has an adequate fit (Gelman, 2013).

For reason of space, in Table 3 we report only posterior means and 95% credibility intervals 
for the regression parameters. According to these results, male gender is protective in all areas, 
confirming a need for gender equality in access to food (e.g., Garcia & Wanner, 2017). Moreover, 
a clear negative effect of quantile of income is seen everywhere, and could obviously be expected. 
The protective effect of income is stronger in low prevalence areas, where access to food is prob-
ably difficult only for the very poor.

We also summarize the latent distribution through average initial and transition probabili-
ties in Table 4. These are obtained by averaging the individual and time-specific parameters. We 
observe that while low prevalence areas form a majority, there are also several high prevalence 

(8)D(r) =

n∑
j=1

T∑
t=1

mjt∑
i=1

[yijt−q(u
(r)
jt
,B(r))]2,

T A B L E  4   Posterior means of marginal initial and transition probabilities for the latent process Ujt when 
k = 7

1 2 3 4 5 6 7

Initial probabilities

0.08 0.17 0.14 0.18 0.17 0.15 0.11

Transition probabilities

1 0.81 0.05 0.06 0.03 0.03 0.00 0.00

2 0.01 0.92 0.05 0.02 0.00 0.00 0.00

3 0.01 0.05 0.83 0.09 0.02 0.00 0.00

4 0.00 0.00 0.10 0.75 0.10 0.04 0.00

5 0.00 0.00 0.02 0.10 0.77 0.08 0.02

6 0.00 0.00 0.00 0.04 0.07 0.83 0.06

7 0.00 0.00 0.00 0.01 0.04 0.07 0.87
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areas. Transitions among latent states are not uncommon but mostly to adjacent latent states. For 
instance, for an area in the high prevalence state 5 at a certain time point there is a 77% chance 
of persisting in the same latent state, 10% chance of moving to the better scenario represented by 
latent state 4, but it is very unlikely to jump to latent states 1 or 2. Moreover, the marginal tran-
sition matrix is not symmetric, with generally larger probabilities to move to higher propensity 
of food insecurity. This is an indication that the number of areas with higher propensity to food 
insecurity has increased over time.

The clustering capability of our approach can be validated by obtaining latent state profiles 
with respect to some endogenous and exogenous variables. We proceed to do so by grouping 
measurements according to the predicted latent state of an area at a given time point, and then 
taking descriptive statistics. A consequence is that areas in the same latent state at a given time 
point can be deemed to be similar with respect to food insecurity, tremendously reducing the 
complexity of the problem. For instance, a country like the United States of America, which 
is divided into 50 areas, is finally clustered into only three groups over the observation period. 
A similar phenomenon is observed for most of the countries considered. In Table 5 we report 
the average prevalence of food insecurity, its standard deviation, the average income and its 
standard deviation, the average household size, the proportion of households with at least one 
member employed full time, and the modal continent of areas in each latent state at a given 
year. It is clear that areas assigned to each latent state are different with respect to all variables 
considered.

We use Equation (1) to compute the state-subject-occasion specific probability of each sub-
ject to be food insecure. These values are then averaged over states using subject-occasion 
specific posterior probabilities of each latent state, and further averaged over area indicators 
to obtain an area-occasion specific prevalence of food insecurity. For imputation in cases in 
which mjt = 0, we proceed as described at the end of Section 4.1. We note here that resulting 
prevalence estimates only minimally change if repeating the procedure, showing therefore 
little sensitivity to random sampling. Additionally, prevalence estimates agree also if random 
sampling is replaced with a mean imputation method in which a single covariate profile is 
fixed as the mean covariate profile from neighbouring areas at the same time occasion, and in 
the same area at the previous and following time occasions. A total of 2141×8 prevalence esti-
mates are therefore finally obtained, and are shown in Figures 1 and 2. A similar strategy can 
be used for extrapolation, obtaining forecasts at time occasions that have not been sampled, 
before or after the observation period.

T A B L E  5   Profiles of latent states obtained by averaging measurements over areas assigned to each latent 
state in a given period

Latent state 1 2 3 4 5 6 7

Prevalence 0.04 0.08 0.13 0.24 0.39 0.57 0.77

sd(Prevalence) 0.03 0.07 0.07 0.08 0.09 0.09 0.10

Income 20543.0 11046.9 9822.3 4998.2 3335.4 2088.9 1216.4

sd(Income) 12718.8 13743.1 8547.6 9344.6 8740.2 2578.4 1936.4

Av. household size 2.84 3.53 3.81 4.23 4.83 5.11 5.86

Employed Full time 0.60 0.52 0.50 0.46 0.37 0.29 0.17

Modal continent Europe Asia Asia Asia Asia Africa Africa
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Gallup uses in many cases non-standard area boundaries, and to the best of our knowledge 
raster data for these areas are not available; hence a map with area boundaries could not be plot-
ted. We proceeded by mapping area names to a latitude and longitude through the Google Maps 
service. The coordinates given by Google do not necessarily point to a geographical centre of the 
area, but can be used to produce a spatial point pattern with dots on those coordinates as done 
in the figures. From Figures 1 and 2 a strong geographical pattern is observed, with some areas 
within countries that differ slightly from the other areas in the same country, especially in Asia 
and Latin America. Additionally, a clear effect of the 2008 economic crisis can be identified in 
several areas of the world and an interesting time pattern emerges for several areas (e.g. areas 
within Madagascar). Finally, to corroborate our results, we also plot clusters of areas as identified 
by the posterior expected latent states in Figures 3 and 4, where areas with the same colour (in 
the same and also in different years) belong to the same cluster of propensity to access to food.

F I G U R E  1   Predicted prevalence in 2007, 2008, 2009 and 2010. One dot per area is geolocalized through 
Google Maps. Each area is coloured from dark green (lowest predicted prevalence) to dark red (highest predicted 
prevalence)



16  |      BARTOLUCCI and FARCOMENI

In the Supplementary Material we give further insights into the properties of our model by 
showing the same maps obtained from raw data. A comparison clearly supports our claims about 
the smoothing effects of our methodology, and the advantages of pooling information over time 
and space. Indeed, maps of raw prevalence exhibit for some areas in some years quite extreme or 
counter-intuitive estimates, due to the high uncertainty associated with sampling a small num-
ber of subjects in an area.

To further illustrate, we restrict our attention to certain areas of interest, whose predicted 
prevalences are reported in Table 6. We consider Somalia's area of Gedo, where in mid-2008 
the third phase of Somali's civil war started after withdrawal of Ethiopian troops. We observe 
a clear rise in the prevalence as a consequence of this event, with the area predicted to have 
switched from latent state 6 to 7 in 2009. In contrast, for a stable and rich area like Stockholm 

F I G U R E  2   Predicted prevalence in 2011, 2012, 2013 and 2014. One dot per area is geolocalized through 
Google Maps. Each area is coloured from dark green (lowest predicted prevalence) to dark red (highest predicted 
prevalence)
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in Sweden, both prevalence and latent state are constant over the observation period. Clearly, 
even in Stockholm there might be suburbs of poor people who struggle to obtain food, but un-
fortunately we do not have information at suburb level. Furthermore, the prevalence in the 
area is clearly, comparatively, low and stable. A latent transition instead occurred in the area of 
Minsk, in Belarus, in 2013. This is probably linked to the fact that GDP in Belarus jumped from 
65.69$ billion to 75.53$ billion. Finally, we consider Bhutan's regions of the capital Thimphu and 
Monggar. Bhutan quickly raised from one of the most poor countries in the world to a safe and 
healthy place, whose inhabitants are happy and well fed. This was an explicit political struggle, 
which is well known to have been successful. It can be seen from the results in Table 6 that, while 
this transition probably applies to the entire country, it might not have occurred simultaneously 
in all areas.

F I G U R E  3   Predicted latent state in 2007, 2008, 2009 and 2010. One dot per area is geolocalized through 
Google Maps. Each area is coloured from light blue (first latent state) to dark blue (seventh latent state)
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F I G U R E  4   Predicted latent state in 2011, 2012, 2013 and 2014. One dot per area is geolocalized through 
Google Maps. Each area is coloured from light blue (first latent state) to dark blue (seventh latent state)

T A B L E  6   Predicted prevalence and latent state (in parentheses) for selected areas

Area 2007 2008 2009 2010 2011 2012 2013 2014

Gedo (Somalia) 0.51 (6) 0.51 (6) 0.72 (7) 0.75 (7) 0.71 (7) 0.71 (7) 0.72 (7) 0.73 (7)

Stockholm (Sweden) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1)

Minsk (Belarus) 0.20 (4) 0.19 (4) 0.20 (4) 0.20 (4) 0.20 (4) 0.20 (4) 0.09 (3) 0.10 (3)

Thimphu (Bhutan) 0.04 (1) 0.03 (1) 0.04 (1) 0.04 (1) 0.03 (1) 0.04(1) 0.03 (1) 0.03 (1)

Monggar (Bhutan) 0.11 (3) 0.10 (3) 0.10 (3) 0.12 (3) 0.10 (3) 0.10 (3) 0.15 (3) 0.05 (1)
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6  |   CONCLUSIONS

We have presented a flexible spatio-temporal model which is based on certain conditional in-
dependence assumptions. On one hand, the use of a discrete latent variable allows us to model 
unobserved heterogeneity with reduced parametric assumptions, as even continuous mixing 
distributions can be expected to be well approximated by a discrete distribution (see, for in-
stance, Bartolucci & Farcomeni, 2009, on this point). On the other hand, it is possible to cluster 
several (here, 2141 × 8) measurements into a few (here, k = 7) groups. Our model provides also 
a comprehensive approach to assess relationships between access to food and certain predictors 
at global level. Time dynamics are also easily evaluated. The most useful feature of our approach 
is the fact that we can obtain prevalence estimates at the area level by pooling information over 
neighbours and time points. This is especially useful for areas without any sampled subjects at a 
certain wave, and in general it can be expected to reduce the mean squared error of predictions. 
Indeed, while observed prevalence at area level can exhibit patterns that might only be due to 
sampling variability, our predictions are often stable and interpretable.

To the best of our knowledge, prevalence estimates are routinely computed only at country and 
region (e.g. continent) level, and this is the first study to present reliable estimates at a smaller spa-
tial scale. These estimates are clearly useful for the development of appropriate strategies to fight 
poverty. Given the fact that high variability can be expected for certain countries, we are confident 
that the lower spatial aggregation we provide can be very useful for policy makers and program eval-
uation. The complete results are available upon request. It shall be mentioned, as a further evidence, 
that a strong agreement can be found between our prevalence estimates (at national level) and the 
official prevalence estimate for food insecurity officially published in FAO et al. (2019).

Finally, for simplicity in this presentation we have ignored sampling weights computed within 
the GWP poll. Indeed, we have tried also fitting simplified versions of the proposed model in which 
sampling weights were taken into account. Results were very similar, with the model with uniform 
weights being more stable in terms of convergence of the MCMC. It shall be noted that this does 
not modify our results in any substantial respect. Moreover, given the very large sample size and the 
complexity of the data structure, which has both a spatial and a temporal dimension, we adopt an 
estimation algorithm that relies on an approximation of the distribution of the latent variables given 
the model parameters that we do not expect to strongly affect results. This approximation, which 
relies on the use of a pseudo-probability rather than the true probability of the latent variables, is not 
uncommon in spatial statistics. Nevertheless, further research could be devoted to a methodological 
study of the impact of this approximation, which is expected to also affect the performance of the 
Watanabe–Akaike information criterion (Watanabe, 2010) that we use for model selection, and it 
is a way to by-pass cumbersome computation of the marginal likelihood. A simulation study of the 
behaviour of this selection criterion specifically for the model proposed in this paper could be also 
of interest. Possible extensions also include the case of time-varying number of latent states as in 
Anderson et al. (2019), and count data as in Bartolucci and Farcomeni (2021).
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