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monitoring properties of the fitted models as the trimming level is varied. For soft trim-
ming (downweighting of observations), some properties are monitored as the efficiency or
breakdown point of the robust regression is varied. Least Trimmed Squares and the For-
ward Search are used to monitor hard trimming, with MM- and S-estimation the methods

fﬁ{:v,gﬁf; data analysis for soft trimming. Bayesian Information Criteria (BIC) for both scenarios are developed and
Bayesian Information Criterion (BIC) results about their asymptotic properties provided. In agreement with the theory, simula-
Forward Search tions and data analyses show good performance for the hard trimming methods for outlier
Least Trimmed Squares detection. Importantly, this is achieved very simply, without the need to specify either sig-
MM-estimation nificance levels or decision rules for multiple outliers.

S-estimation

Crown Copyright © 2022 Published by Elsevier B.V. on behalf of EcoSta Econometrics and
Statistics. All rights reserved.

1. Introduction

We extend information criteria for model choice to the detection of outliers in regression models. The resulting proce-
dures are computationally straightforward and circumvent the construction of the complicated rules required for the detec-
tion of multiple outliers, the properties of which may be only approximately known. We develop criteria for adaptive hard
trimming in least squares, together with related criteria for MM- and S-estimation.

Hard trimming in regression requires specification in advance of the proportion of observations to be trimmed. Like-
wise M-estimation in robust regression and its extensions, such as S- and MM-estimation, require advance specification of
the breakdown point or efficiency desired for the estimation procedure. In Section 2 we describe the idea of monitoring
that leads to a data dependent estimate of the trimming level or breakdown point. As a result, efficient estimates of the
regression parameters are obtained that depend on the actual level of contamination in the data.
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In Section 3.1 - 3.3 we introduce the three major components of our procedure, respectively the BIC, customarily used
in the choice of models, the mean shift outlier model and algebraic details of the forward search (FS). We combine these
components in Section 3.4, using the mean shift outlier model and the ordering of observations from the forward search,
to extend BIC to the choice of trimming level for outlier removal in least squares. We prove the consistency of the resulting
outlier detection procedure and, in Section 3.5, provide a procedure for finite samples.

Results in Section 4.1 use the soft trimming of observations in M-estimation to apply the mean shift outlier model to the
development of a form of BIC indicating the appropriate target asymptotic breakdown point or efficiency for specific robust
regression analyses. Section 4.2 provides a proof of the difference between the asymptotic properties of BIC from soft and
from hard trimming. Section 5 provides numerical procedure for outlier detection for both MM- and S-estimation.

Section 6 uses simulation to explore the relationship between the asymptotic results of Sections 3 and 4. Hard trim-
ming with the forward search provides the clearest indication of the number of outliers, especially for a larger number of
explanatory variables.

Section 7 applies these methods to three regression examples: one small and straightforward, one small but with a high
proportion of outliers and one with 1,405 observations and several outliers. The soft trimming analyses use Tukey’s biweight
p function for both MM- and S-estimation, for which we introduce a new method of estimation of error variance that is
appropriate for outlier detection. We arbitrarily classify as outliers those observations with a soft trimming weight below
a specified threshold. In the appendix we derive two further forms of BIC for soft trimming. Section 8 summarises the
comparative performance of these various forms of BIC on the three data examples.

In Section 9 we mention the potential extension of our work to model selection in the presence of outliers. The role of
statistical significance testing in outlier detection is touched upon. Our overall conclusion is that monitored hard trimming
methods provide the sharpest removal of outliers and so the most efficient robust parameter estimates. Of these, the com-
putationally simplest is this paper’s version of the forward search. This successfully detects outliers without requiring either
specification of the expected contamination level in the data or arbitrary significance levels in, perhaps, arbitrary outlier
identification rules.

2. Hard and Soft Trimming
2.1. Three Classes of Estimators for Robust Regression

It is helpful to divide methods of robust regression into three classes (Hampel et al., 1986; Atkinson et al., 2004; Far-
comeni and Greco, 2015).

1. Hard {0,1} Trimming. In Least Trimmed Squares (LTS: Hampel, 1975; Rousseeuw, 1984) the amount of trimming of n
observations when the linear model has p parameters is determined by the choice of the trimming parameter h, [n/2] +
[(p+1)/2] < h <n, which is specified in advance. The LTS estimate is intended to minimize the sum of squares of the
residuals of h observations. For least squares, h = n.

2. Adaptive Hard Trimming. In the Forward Search, the observations are again hard trimmed, but the value of h is deter-
mined by the data, being found adaptively by the search (Riani et al., 2014a). Algebraic details are in Section 3.3.

3. Soft trimming (downweighting). M-estimation and derived methods, depending upon the way in which the residual vari-
ance o2 is estimated. The intention is that observations near the regression plane retain their value, but the p function
(Section 4.1) ensures that increasingly remote observations have a weight that decreases with distance from the plane.
The desired value of either the asymptotic breakdown point (bdp) or of the efficiency has to be specified. This efficiency
is that of estimation when the method is applied to a sample from the normal distribution.

The FS starts from a small subset of hy robustly chosen observations, by default found using least median of squares
(Rousseeuw, 1984). The purpose is to ensure that the observations in hy are outlier free. The search then moves forward
incrementing the subset size by one until the final least squares fit is reached, when h = n. In this way parameter estimates
are obtained for a range of values of h - typically interest is in n/2 < h < n. We avoid having to prespecify the value of h for
LTS by monitoring the fit over a similar range of values.

We consider two derivatives of M-estimation. In S-estimation (Rousseeuw and Yohai, 1984) the estimate of o2 is found
from a robust estimating equation with specified bdp. The associated estimate of the vector of regression coefficients is
called an S-estimator because it is derived from a scale statistic, although in an implicit way.

The asymptotic relationship between the breakdown point and efficiency of S-estimators is that as one increases, the
other decreases. In an attempt to break out of this relationship, Yohai (1987) introduced MM-estimation, which extends S-
estimation. In the first stage the breakdown point of the scale estimate is set at 0.5, thus providing a high breakdown point.
This fixed estimate of residual scale is then used in the estimation of 8 with a specified high theoretical efficiency.

For both MM- and S-estimation, we again monitor the performance of our outlier detection procedure over a range of
values of the settings of the robust method. For S-estimation we monitor values of bdp from 0.5 (the value giving highest
trimming) to a value of 0.01, whereas for MM-estimation we monitor over values of the nominal efficiency of estimation of
B, for which Maronna et al. (2006, p. 126) recommend a value of 0.85, from 0.5 to 0.99. We observe in some data analyses
in Section 7, as did Riani et al. (2014a), that specification of too high a value for this efficiency can lead to a failure of
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robustness and to a least squares fit. For all four methods of robust regression we monitor the values of information criteria
and the values of residuals or the weights of observations as we move from very robust regression to least squares.

3. Information Criteria
3.1. BIC

There is a large literature on the use of a variety of information criteria in choosing the best model for a set of data.
Claeskens and Hjort (2008) provide a treatment with a nice combination of mathematics and data analysis.

Let L(6) be the loglikelihood of the n observations y;, with the parameter vector 6 of length p. With 6 the maximum
likelihood estimate of 6, a general form of information criterion is IC = 2L(§) —k(p,n), where k(p,n) is a function that
penalizes more complicated models. For the Bayesian Information Criterion (BIC) introduced by Schwarz (1978), k(p,n) =
plogn so that the penalty increases with sample size. That model is selected for which BIC is largest.

_ For the linear regression model with univariate response and independent normal errors of constant variance o2, where
B is the least squares estimate of the p parameters 8 of the linear model and R(S) is the residual sum of squares of the y;,

BIC = —nlog{R(B)/n} — plogn, (M

after constants irrelevant to the comparison of models are ignored.

We recall that use of BIC provides consistent selection of the true model, if that is included in the set of models under
consideration. Justifications of the word ‘Bayesian’ in the name BIC are given, amongst others by Claeskens and Hjort (2008,
p.78) and Bhat and Kumar (2010), expanding the original presentation of Schwarz (1978).

In the use of BIC in the choice of a regression model, the comparison is between models with different terms included
or removed. As a preliminary to the results of Section 3.4 we consider BIC for nested regression models. Let the true model
be the linear model with p x 1 parameter B, and n x p matrix of explanatory variables X,. A model with g x 1 parameter
Bq. q < p will be called false and a model with r parameters, r > p is called correct, but is not minimal. For asymptotic results
we require

Condition 1. X]X,/n > My with det(My) # 0.

We first test a false model. The likelihood ratio test for By against B, has an asymptotic non-central ngq distribution
with non-centrality parameter A, which from Condition 1, increases as n. The BIC penalty for the comparison of these two
models is (p — q) logn, increasing more slowly with n, so that the true model will be chosen as n increases.

For a correct model the likelihood ratio test for B, against B, has asymptotically a central sz,p distribution and the
BIC penalty is (r — p) logn. Thus, for large n the true model will be preferred. Putting these two together demonstrates the
consistency of the BIC.

3.2. Mean Shift Outlier Model

Use of the forward search or least trimmed squares to provide robustness against outliers leads to the comparison of
fitted models with differing numbers of observations. We render outlier detection and deletion compatible with BIC through
use of the mean shift outlier model in which deleted observations are each fitted with an individual parameter, so having a
zero residual.

Let there be h observations remaining in the fitted model. Then n — h observations will have been deleted. This can be
expressed by writing the regression model as

y=XB+D¢ +e¢, (2)

where the errors € have constant variance o2, Here D is an n x (n — h) matrix with a single one in each of its columns and
in n — h rows, all other entries being zero. These entries specify the observations that are to have individual parameters or,
equivalently, are to be deleted (Cook and Weisberg, 1982, p.20; Insolia et al., 2020).

For deletion of the single observation i, D becomes a vector. The likelihood ratio test for ¢; = 0 is the deletion residual r}

which compares the observed value of y; with the prediction y;, = xl.TB(,-), where B(i) is the least squares estimate of 8 when
observation i is deleted. Results from the theory of regression diagnostics (Cook and Weisberg, 1982, p.21; Atkinson, 1985,
p.23) show that the null distribution of r} is Student’s t on n — p — 1 degrees of freedom. This statistic can then be used to
test if y;, for a specified i € {1,...,n}, is an outlier. Sometimes interest is in whether there is an outlier in the data. Since
the deletion residuals are correlated, the distribution of the maximum absolute order statistic for a sample of size n from
the t;_,_1 distribution does not give the distribution of the maximum r} for a sample. That can be approximated by use of
the Bonferroni inequality when max|rf| is tested using ty/nn—p—1, although the power of such a test may be poor. Usually
interest is in the more general question as to whether there are some outliers in the data, the number being unspecified.
Buja and Rolke (2003) illustrate the large effect on test size arising from such simultaneous tests.
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3.3. The Forward Search

The FS fits subsets of observations of size h to the data, with hg < h <n. Let S*(h) be the subset of size h found by the
FS, for which the matrix of regressors is X (h). Least squares on this subset of observations yields parameter estimates B(h).
Residuals can be calculated for all observations including those not in S*(h). The search moves forward with the augmented
subset S*(h + 1) consisting of the observations with the h + 1 smallest absolute values of the residuals. The outliers, if any,
enter S*(h) towards the end of the search.

Above a threshold value on h, often 0.6n, a test is performed for the presence of outliers before each incrementation of
S*(h). Because of the multiple testing involved, Riani et al. (2009) propose a complicated rule based on quantiles of order
statistics which is intended to have a simultaneous size of 1% for samples with n up to around 1,000. Examples of the use
of this rule in monitoring regression are in Riani et al. (2014a).

The consistency of the FS estimator when the data contain no outliers is proved by Cerioli et al. (2014) for multivariate
data and by Johansen and Nielsen (2016) for univariate regression. We now allow outliers in the data generating distribution.

Let the uncontaminated observations belong to the set #, of cardinality h* and let the outliers belong to H°, with H U H°
containing all observations. The number of outliers is then n — h*, neither this number, nor their identity being known.
Asymptotically, we consider a fraction of contaminated observations y =1 —h*/n, 0 <y < 0.5. The FS progresses by order-
ing the squared residuals el.z(h); ie{l,...,n}.

Asymptotic distribution of squared residuals. The small-sample distribution of the residuals ei2 (h) depends on the lever-
age I; = xT{X(h)TX (h)}~'x;. From Condition 1, 1;2.0. Then, in the absence of outliers in S*(h), ez (h) s o2 x2. The individual
outliers have asymptotically the noncentral chi-squared distribution o2 )212()»,11-). For asymptotic results about robustness we
assume

Condition 2. For all i € H°, Ap; = o(n).

Condition 2 is a rather strong, although standard, separation condition which requires outliers to be increasingly far from
the clean observations as n grows, in such a way that the non-centrality parameter of the resulting chi-squared distribution
grows faster than n. This condition is nevertheless slightly less stringent than some similar ones already considered in the
literature, e.g., the separation condition in Cerioli et al. (2014) where it is required that the probability mass for outliers
is asymptotically concentrated exponentially fast in the tails of the distribution of the clean observations. Here we simply
assume that the the non-centrality parameter Ap; grows as the square of the distance between the clean data centroid and
the centroid of the outlier generating distribution.

We call a correct ordering of the observations one in which S*(h*) = #; that is that at step h* there are no outlying
observations in S*(h*).

3.4. Extended BIC for Outlier detection

To incorporate deletion of observations in BIC (1), let the residual sum of squares for a parameter estimate b when n —h
observations are deleted be R, (b), To allow for the additional parameters in (2), BIC (1) is accordingly replaced by

BICH = —nlog{R,(By)/h} — (p+n — h) logn. 3)

The rationale in (3) is that under the model all observations are still included in the estimation set (hence the use of n),
but only h are used for computation of the residual sum of squares. Finally, (p +n — h) is the number of parameters.

Theorem 1. Assume Conditions 1 and 2. Let h}; denote the cardinality of uncontaminated observations for a sample of size n, and
assume limy h/n =1 — y for some y < 0.5. The initial estimation set, of cardinality hg,, is outlier free; we assume limy hg,/n >
0 and hg,/hi < 1 for all n. Then, for hard trimming,

fim A8 Ma%y {1 log Ry (B /M) — (p+n —hylogn} _,
n n
that is, as n grows BICH is a maximum at an estimation set which does not include outliers.

v,

Proof of Theorem 1. Since the initial set of hy, observations is outlier free by assumption, and limp hg,/n > 0, BhOn is a
strongly consistent estimate of . Then,

lirl;nlog{Rhon (Bho,l)/hOn} = lOg(o‘z(hon)o—Z)’ (4)

where o2(h) is a correction factor discussed in Eq. (6) of Section 3.5. Let arg max,{—nlog(Ry (Bh)/h) —(p+n—-h)logn} =
hp.

We proceed by contradiction. Suppose that there is at least one outlier in the estimation set based on fn observations.
By assumption, this implies that h, > hg,, since the initial set is outlier free. Due to Condition 2,

limlog{Ry, (B;,)/ ()} = o(logn). (5)
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Now compare the initial estimation set with the optimal set in terms of BICH difference, divided by n. Let

K= —log (%ﬁ')) —n~Y(p+n—hy)logn +log (%f’“)

+n~1(p+n —hg,) logn.

Simplifying and collecting terms we obtain

R; (B: Yhon -
K = _tog [ K Pidhon ) s b logn
Rth (IBhOn )h”

Ry, By, )ho
< —log M

Ry, (Bhg, )i
Combining (4) and (5) the first summand is seen to diverge (negatively) at a faster rate than the second one, which, since
by assumption 0 < limp ho,;/n < 1, diverges (positively) at the rate O(logn). There will then exist i1 such that, for n > 7,
BICH associated with the initial set will be larger than BICH associated with hy. This contradicts the definition of h, as the

maximum of BICH. Asymptotically, the optimal estimation set in terms of BICH must then be outlier free. Since there are at
most hj uncontaminated observations,

) +n~1(n - hy,) logn.

lign argmaxh{—nlog(Rh(,Bh;/h) — (p+n—h)logn} <1-y
which completes the proof. O

)

Let hf be the size of the subset for which the rescaled value of BIC (7) is maximized. The theorem proves that asymp-
totically S*(h") will not include any outliers. However, the asymptotic conditions may not be satisfied for finite sample sizes
and small separation of the outliers, as in the simulations of Figures 3 and 4. Then S*(h") may contain some outliers and
miss some non-outlying observations.

Least Trimmed Squares. We note that the theorem also applies to monitored LTS, in which the best subset S*(h) is found
for a range of values of h, rather than for a single specified trimming value as in the original proposal (Rousseeuw, 1984).
The difference is then in the algorithms used for calculating S*(h), h; < h < n, where h; is the lower limit of subset size that
is of interest. If both algorithms result in the same value of S*(h) over the range of h, the residual sums of squares will be
identical as will be the values of BICH. To the best of our knowledge formal conditions under which the two algorithms give
the same S*(h) have not yet been studied.

3.5. Finite Sample Extended BIC for Outlier Detection
We now consider two further points arising from the application of BICH to finite samples.

3.5.1. Estimation of o2

In (3) 02 is estimated by {R; (Bh)/h}. To find the n — h outlying observations, the FS or LTS deletes the observations most
remote from the fitted model. If there are no outliers the value of Rn(ﬁn) leads to an asymptotically unbiased estimate
of o2. Then the deletion of the n —h most remote observations yields the parameter estimate Bh and the residual sum of
squares Rh(Bh), which provides a too small estimate of o2 since it is calculated from the central h residuals. The variance
of the truncated normal distribution containing the central h/n portion of the full distribution is

2n . (n+h f(n+h
o2(h):1—W<1> ‘( o >¢{c1> ‘( o )} (6)

where ¢(.) and ®(.) are respectively the standard normal density and c.d.f. See, for example, Johnson et al. (1994, pp. 156-
162). We scale up the value of R, (B}) to obtain the corrected BIC

—nlog[Ry(By)/{ho?(h)}] - (p+n —h)logn. (7)

This consistency correction is standard in robust regression (Rousseeuw and Leroy, 1987, p.130). The correction o2 (h)
in (6) is the one-dimensional case of the general result in Tallis (1963) on elliptical truncation in the multivariate normal
distribution.

For hard trimming (7) can be rewritten with weights w; = 0,i € n — h and one otherwise as

BICW = —nlog {Rh(ﬁw{oz(h) wa}} - {p+ > wl-)} logn, (8)
i=1 i=1

where 37, w; = h.
In Section 4.1 we rewrite BICH (3) in a weighted form for soft trimming.

193



M. Riani, A.C. Atkinson, A. Corbellini et al. Econometrics and Statistics 29 (2024) 189-205

3.5.2. Masking

The proof of Theorem 1 relies on Condition 2 for all y; € #°, particularly through the distribution of the residuals. In the
analysis of data the outliers may not be very large and outlying observations will appear less so as the FS progresses and
the parameter estimates are corrupted once outliers are included in S*(h). Although the value of Rh(Bh) will continue to
increase with h it may not do so sufficiently fast to outweigh the decrease in the penalty of —hlogn. As a consequence, the
value of BICW may increase for h > hf + 1. We see an example in Section 7.2.

4. Soft Trimming
4.1. BIC for Soft Trimming

We now extend the idea of downweighting in BICW (8) to include soft trimming such as S- and MM-estimation. The
S-estimator of the regression parameters is defined as

Bs=n}gnip(§;), (9)

where e; = y; — BTxi is the i-th unscaled residual and &5 is the robust estimate of o found by minimizing the dispersion of
the residuals as defined by Rousseeuw and Yohai (1984). A consistency factor is applied to 5. S- and MM-estimation differ
in the choice of .

Let ¥ (u) = dp(u)/du. Then, in the iterative least squares algorithm for M-estimation, the weights are taken as w(u) =
Y (u)/u, that is w; = w(u;) = w(e;/&). It is required that w; = 1 for observations that are not to be downweighted. Since for
least squares the bdp is zero, no observations are downweighted and all have the same weight w(0). We can then simply
rescale and set

We can now adapt the BICH (3) for hard trimming to soft trimming. Each observation will have a weight w; € [0, 1],
smoothly varying from 1 to 0 as the observation becomes more outlying. We obtain

BICsz—nlog{R(ﬁp)/Zwi}— p+> (1—w) { logn, (11)
i=1

where R(Bp) is the weighted sum of squared residuals e;. The expression for BICW (8) specifically shows the consistency
correction o2 (h), whereas, in (11), R(Bp) has already been corrected to provide a consistent estimate.

4.2. BIC for Soft Trimming versus Hard Trimming

For hard trimming the bdp d =1 — h/n. Theorem 1 shows that, eventually, use of BIC for the FS produced a value of
dfir = 1 —h*/n. This section provides a proof that the bdp from use of the function p(u) (9) to remove outliers leads to the
same result under the separation condition. We also argue why we expect in general downweighting to lead to a value of
bdp greater than 1 — h*/n, and so to parameter estimates of reduced efficiency.

Condition 3. Let w(u) be such that

1. For any |u| > 0, w(u) < w(0);
2. For |u| > ¢c,w(u) =0.

Tukey’s biweight (Beaton and Tukey, 1974), which we use in our numerical examples, satisfies these conditions.

Theorem 2. Let the estimate of d maximizing BICW, for soft downweighting be d's. Then, under Conditions 1 - 3, limp d}c =
limp, d 7.

Proof of Theorem 2. For least squares d = 0 and, in Condition 3, ¢ = co. As d is increased, ¢ decreases. Combining Condition
2 with Condition 3 it can be seen that there exists n* such that, for n > n*, w; =0 for i € #°. Hence, for n > n*, FS and
downweighting are equivalent. The proof is then equivalent to that of Theorem 1. O

When we relax Condition 2 we often can expect lim, d;ic > y. Indeed, when the outliers are less extreme, the weights
(10) of the outliers may not all be zero, even though they may be the most appreciably downweighted observations. The
monitoring plots of weights in Section 7 illustrate this point. Selection of an M-estimator with unnecessarily high bdp, leads
to a loss of efficiency in estimation. Figure 5 and 6 of Riani et al. (2020) plot the relationship between breakdown point and
efficiency for several well-known forms for p(u).

194



M. Riani, A.C. Atkinson, A. Corbellini et al. Econometrics and Statistics 29 (2024) 189-205

Table 1
Two different forms of BIC.
Criterion Equation Estimation Formula
BICW ®) Ls —nllogRy (By) /o (h) iy wi}]
—{p+ XL (1 -w)}logn
BICW, (i MM & S —nlog{R(ﬁp)/Zgll w,-}

~{p+ XL (1-w)}logn

5. Implementation of MM- and S-estimation

In our numerical examples we use Tukey’s biweight (Beaton and Tukey, 1974) in which the boundary of the central region
of the p function is defined by the parameter c. As ¢ — oo, p(.) approaches a quadratic and the fitted model becomes that
from least squares; the bdp d — 0 and the efficiency eff — 1. We monitor the behaviour of BICW, as the values of these
parameters change. Riani et al. (2014b) give computationally fast procedures for determining the value of c for Tukey’s
biweight which yields specified values of d or of eff. Use of MM-estimation provides estimates of 8 for a fixed, although data
dependent, value of o as eff varies. On the other hand, S-estimation (Rousseeuw and Yohai, 1984) provides simultaneous
robust estimates of B and o2 as d varies.

In our robust calculations for MM we typically take 50 values of eff over the range 0.5 to 0.99. The value maximizing
BICW,, is denoted effr . For S-estimation we vary d over a set D such that bdp varies from 0.5 to 0.01, giving the maximizing
value d'. In both cases we also include LS (d = 0 or eff = 1) to cover the absence of any outliers. The procedure for MM-
estimation is straightforward because, throughout, we use a very robust estimate of o2. However, for S-estimation, each
d € D yields parameter estimates Bd and 6,12, leading to raw residuals eg; = y; —xiTBd. But, if d is too small, the estimate of
0?2 may be inflated due to contamination by outliers, even if w; < 1 for i € 7°. To obtain a consistent estimate of o2 in the
presence of contamination we use the very robust estimate 602, which is the value of 6dz for d = 0.5. We then rescale the
residuals used in calculating BICW,, to obtain ryy; = ey;/69, so avoiding the effect of too large an estimate of o on the scaled
residuals. Monitoring the value of BIC over D leads to the maximizing value df. However, because of the use of 63, this
procedure does not completely reflect the downweighting of outliers.

We follow the reasoning of Rousseeuw and Yohai (1984) in their derivation of S-estimation, but allow the data to deter-
mine the estimate of o2, At the value d' let the residuals scaled by &, be rgi. To model the effect of downweighting outliers

we find the residuals 7 from S-estimation, that is using 6, as an estimate of o and calculate their distance from rgi. The
minimum value of this distance over D gives us a new estimated maximizing bdp d*, depending on the S-estimates of §
and o calculated with the same value of d. We found a useful measure of distance to be the weighted sum of squares

n
SSD(d) = Y wi (Fai — 1), (12)
i=1
where the w&. are the weights w; (10) associated with the residuals rgi. Then
d* = argmax SSD(d). (13)
deD

6. Simulations

We now use numerical simulation to illustrate some of the properties of our procedure for small samples. We are inter-
ested in behaviour as efficiency increases. For the FS we monitor performance as the value of h increases, one observation
at a time. The other three methods were originally defined either by specifying efficiency or bdp, and we monitor them for
50 values of these. Table 1 presents expressions for the two weighted forms of the BIC, namely BICW and BICW, that are
important in our simulations.

We begin in Figure 1 with the distribution of trajectories of the values of BIC for four forms of outlier detection. The
simulations are for n = 200, with four explanatory variables (p = 5) simulated from standard normal distributions (the pro-
cedures are invariant to the values of the regression parameters, so these are set to zero). The observational errors are
independent standard normal with a shift of § =5 added to 20 observations, so that there is 10% contamination, that is
y = 0.1. There are 200 simulations; we plot the 1, 50 and 99% quantiles of the estimated values of BICW. The top row of
the figure shows the trajectories of BICW for the two hard trimming methods, monitored LTS and the FS, with BICW,, for
the two soft trimming procedures, S and MM, in the lower row. All curves have a similar shape, at first increasing almost
linearly to a maximum before decreasing more or less sharply.

Since we monitor from n/2 to n, when n > 100 we evaluate at fewer values of h for LTS than we do for the FS. We also
start LTS estimation anew for each h. We could modify monitored LTS by evaluating at each value of h > n/2 and using the
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Fig. 1. Distribution of trajectories of BIC for outlier detection when p = 5; 10% contamination. Upper row, BICW for hard trimming; lower row BICW, for
soft trimming. 200 simulations, n = 200, 1, 50 and 99% points of the distribution.

parameter estimates from S*(h) to provide starting values for estimation for S*(h + 1). These modifications would reduce
some of the differences our simulations show between LTS and the FS. We choose not to do this, as we are not intending
to develop new hybrid algorithms, but rather to compare those already in the literature.

The curves for hard trimming have a wider range of trajectory values than those for soft trimming, but the feature of
main interest is the position of the maximum of the curves and so the indicated degree of trimming. For the hard trimming
methods the maxima are close to 0.1, correctly indicating 10% contamination. For S-estimation the maximum is near a bdp
of 0.2, whereas for MM-estimation the maximum is close to a high efficiency of 0.93. In all cases the presence of some
outliers is indicated. In results not shown here we ran simulations for a smaller proportion of outliers and when there were
none. In this latter case the trajectories for all four procedures increase linearly, with the maximum at non-robust least
squares estimation.

Figure 2 shows boxplots of the position of the maxima for the trajectories of the four versions of BIC plotted in Figure 1.
We see that the boxplots for the two hard trimming methods in the upper row are both centered around detecting 10%
of outliers, but that the variability for LTS is greater than that for the FS. The scatter for both soft trimming methods is
greater than that for the FS. As noted by a referee, the S-estimator is always computed with a bdp greater than the actual
contamination level, which makes it more resistant to contamination. For the remainder of this simulation section we focus
on hard trimming methods.

The outlier detection properties of the two hard trimming methods depend on the numerical details of the algorithms
we have used. For each simulated set of 200 observations when using LTS we calculated BICW for 50 values of h from 0.5n
to 0.99n. The calculations for the different values of h are independent, using 1,000 elemental subsets with concentration
steps (Rousseeuw and Van Driessen, 1999) to find the estimates of the regression parameters for each value of h. When
n = 200 the number of observations in h changes in steps of two, so that the proportion of outliers found can only change
in steps of 0.01. For the FS we take 1,000 elemental subsets of all n observations, calculate the value of the LTS criterion
with bdp 50% for each subset and take as the initial subset for the FS that yielding the minimum of the LTS criterion. Use
of LTS, rather than the default LMS, at this point has no effect on the numerical results.

We now look at the proportion of observations declared as outliers as the shift § in the twenty outliers increases. Box-
plots for these results are in Figure 3. The median number of outliers for each shift is shown, in the online version, as a red
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Fig. 2. Boxplots of position of maxima of BIC outlier detection trajectories plotted in Figure 1; p=>5, 10% contamination. Upper row, BICW for hard
trimming; lower row BICW, for soft trimming. 200 simulations, n = 200.

Table 2
Average number of correct and incorrect declarations of outliers for LTS and the FS as a function of outlier shift § and sample size; p = 5, 10% contamina-
tion.

n =200 n =500
$ LTS FS LTS FS

Outliers Good Outliers Good Outliers Good Outliers Good
4.5 8.84 0.58 13.31 0.42 3.10 0.10 13.60 0.14
5 16.38 1.25 18.50 0.63 326 13 45.50 0.73
5.5 19.42 1.50 19.84 0.63 47.57 2.80 49.40 0.85
6 19.85 1.63 19.96 0.62 49.54 3.16 49.84 0.89
6.5 19.94 1.66 19.99 1.46 49.81 3.24 49.96 0.90
7 19.99 1.95 20 0.66 49.94 3.34 50.00 0.90
7.5 20 1.99 20 0.72 49.98 3.32 50 0.90
8 20 1.84 20 0.72 50 34 50 0.90

horizontal line. This shows that when é = 4.5, the median number of outliers declared by LTS is around 0.01, whereas it is a
little less than 0.1 for the FS. In general, as § increases from 4.5 to 8.0, the proportion of outliers detected for both LTS and
the FS is around 0.1. The figure illustrates in three ways the improvement in using the FS compared to monitored LTS: the
detection of outliers occurs for a lower value of §, the mean results are more stable for larger § as indicated by the width
of the boxplots and there are fewer simulations leading to false declarations of extra outliers. The plots also show the effect
for LTS of increments in the proportion of outliers detected in steps of 0.01, as opposed to 0.005 for the FS.

We now finally, for these simulations with n = 200, look at the number of good observations declared as outliers and the
number of outliers correctly detected, again as the shift in the outliers increases. The average results over 200 simulations
for both n =200 and 500 are in Table 2. As the outlier shift § increases from 4.5 to 8.0 both LTS and the FS detect all
outliers, with the FS detecting more for lower values, especially 4.5 and 5 when n = 500. As § increases, the number of
false declarations also increases, although the average number is smaller for the FS. When n = 500 the value of h for LTS is
incremented by 5 observations. It is interesting that when § = 8 the average number of false declarations for the FS is 0.9,
whereas it is 3.4 = 0.9 + 5/2 for LTS, 5/2 being half of the increment size for the values of h in this simulation.
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Fig. 3. Boxplots of the proportion of observations declared as outliers as the outlier shift § increases; p =5, 10% contamination. Left-hand panel: LTS,
right-hand panel FS; n = 200.
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Fig. 4. The effect of outliers at leverage points, combined with a larger number of explanatory variables. Boxplots of the proportion of observations declared
as outliers as the outlier shift and explanatory variable remoteness § increases when n = 500 and p = 15; 10% contamination. Left-hand panel: LTS, initial
subsets of 1,000 observations; right-hand panel FS.

Figure 3 and the related Table 2 provide a nice illustration of the result of Theorem 1. As both § and n increase all
the outliers are identified, both by LTS and the FS. However, there is always a small number of good observations that
are mistakenly declared to be outliers. The results so far do show that the FS performs better on all measures than LTS,
although the difference is not large provided § > 5. We also considered the performance of the two methods when the
number of explanatory variables increases, both for n = 200 and 500, with p increased to 15. In summary, for this increased
number of explanatory variables, LTS detected a maximum of four outliers until § = 7.5. For § = 8 too many were detected.
The unsatisfactory behaviour of LTS when p = 15 was unexpected. We accordingly repeated the simulation with initial LTS
subsets of 10,000, rather than 1,000, observations. There was little improvement.

In all these simulations the outlying responses have been within the range of the explanatory variables. As a fi-
nal extension of our investigation, we consider outliers at leverage points. The 14 explanatory variables were simu-
lated independently but were generated to have an average value of R? = 0.8 before contamination. We kept n at
500, including 50 outliers so that y remained at 0.1. For each value of § not only was this value added to the
50 outlying responses but also to all explanatory variables. We thus generated outliers at extreme leverage points.
Boxplots for the results are in Figure 4. The left-hand panel of the figure shows that LTS completely fails to de-
tect the many outliers; the medians of the boxplots are all at zero, as shown in the online version of the plot
by the red lines at this value. On the other hand, the FS reveals all the outliers, with a few extra, for all val-
ues of 6. This figure leads to the same conclusions as those for the two simulations with p =15 mentioned above,
in which the outliers were not at leverage points and the initial subsets for LTS were of size either 1,000 or
10,000.

We have no explanation for the surprisingly poor behaviour of LTS when p = 15. As Olive (2020) stresses, a complex
estimator, such as many of those used in robustness, depends not only on the mathematical formulation and theoretical
properties of the estimator, but also on the details of the algorithm used to provide numerical values of estimators. The
good performance of the FS when p = 15 suggests one approach to an improved LTS algorithm.
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Table 3
Number of outliers detected by five methods for the three examples of Section 7.
Example Illness Stars Balance Sheet
Method Estimate
LTS/FS n—hi 3 6 9
MM eff’ 2 4 3
S df 3 4 1
S d* 3 6 9
20 ' ' ' ' 1 20r1
Or 0
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Fig. 5. Mental illness data. Monitoring plots of BICW. Left-hand panel, Least trimmed squares (LTS); right-hand panel, Forward Search (FS). The stepping
for LTS arise from a search over 50 values of h.

7. Examples

We now illustrate the finite-sample properties of the procedure through the analysis of three distinct examples. We
compare LTS and the FS with MM- and S-estimation. Since the purpose of our paper is to provide a method of outlier
detection we need to define an outlier in soft trimming, which we arbitrarily take as an observation for which w; < 0.01.We
then count the number of outliers at the BIC maximizing values hf, efﬁ, d" and d*. In our examples we use monitoring plots
of residuals and weights to illuminate the procedure. But, for automatic outlier detection, we are not initially interested in
monitoring over a series of grids, but in selecting a single value for further investigation.

In the first example there are data on 53 patients, the response of three of which are contaminated. The remaining data
follow a normal distribution. In the second example, the ‘Stars’ data, there are only 47 observations, but the structure of
outliers is more complicated; monitoring plots of residuals show a clear switch from a robust to a non-robust fit when the
target bdp is too low. The third data set has 1,405 observations. The responses in two of these examples require transfor-
mation; in all cases we work with a suitable response transformation found outside this paper. The two forms of BIC are
listed in Table 1, with a summary of the outliers detected for the three examples in Table 3.

7.1. Example 1: Mental Illness Data

Kleinbaum and Kupper (1978, p.148) describe observational data on the assessment of mental illness of 53 patients.
The data come from a psychiatrist’s assessment of mental retardation and degree of distrust of doctors in newly hospital-
ized patients. After six months of treatment, a value is assigned for the degree of illness of each patient. Atkinson et al.
(2021) showed that when degree of illness is regressed on the two initial assessments, there is strong evidence for trans-
formation of the response. The Box-Cox transformation indicates the log transformation. After transformation the data are
well behaved. We study the effect of outliers by modifying three of the smallest observations (17, 30 and 53), setting them
equal to one. This contamination causes the log transformation to be rejected.

We start with least squares analysis of the logged contaminated data. The left-hand panel of Figure 5 shows the plot of
BICW for LTS estimation and the right-hand panel that for FS. Both show the almost linear increase as more observations
are included in the fit, as indicated by Theorem 1, until a peak for h near n, after which there is a sharp decline. For the
FS the peak is at h = 50. For LTS the bdp at the maximum is 0.07, which corresponds to h = 50. Here both LTS and the FS
have correctly identified the 3 outliers without the need for a complicated outlier detection rule such as that of Riani et al.
(2009) and without the need of specifying subjective confidence bands. The stepping of LTS arises because, for breakdown
point d, h is found as [n(1 —d)7.

The monitoring plots of BIC from MM- and S-estimation are similar in shape to that for the FS in Figure 5. The maximum
for MM is effl = 0.96. For S-estimation the maximizing value when o is estimated by oy is df = 0.14. The trajectory for BIC,
using this estimate is plotted in the upper panel of Figure 6. The lower panel of the figure shows the trajectory of the
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Fig. 6. Logged mental illness data. Upper panel: Monitoring plot of BIC, for S-estimation using 6o; d' = 0.14; lower panel: weighted sum of squares SSD(d)
of the differences of the residuals 7y; and ryg;; d* = 0.23.
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Fig. 7. Logged mental illness data. Monitoring plot of weights W;. Left-hand panel MM-estimation; efﬁ = 0.96. Right-hand panel S-estimation with scale
estimate 64; d* = 0.23,d" = 0.14.

weighted sum of squared residuals SSD(d) (12), the minimum of which gives the estimated optimum bdp d* = 0.23, greater
than the value of df. For LTS and the FS the efficiency when the three outliers are deleted is 0.943, so that the bdp is 0.057.
These results for S-estimation are in line with the comment following Theorem 2 that often d' > y (= 0.057). For small
outlier displacements § and small sample sizes, some soft trimming methods may, as in the other examples of this section,
fail to detect all the outliers. Then the inequality may not hold. Similar remarks, with sign reversed, hold for comparisons
of the values of eff.

To determine the outliers from soft trimming and to interpret the results we look at monitoring plots of the weights w;
over the range of values of eff or d. The left-hand panel of Figure 7, for MM-estimation shows the small weights for the
three outliers. For eff = 0.95, three outliers are detected but at efﬁ (= 0.96) only two are found. The right-hand panel of the
figure shows the weights for S-estimation. The weights of the three outliers are smaller than 0.01 by a bdp of 0.14, which
is the value d'. The three outliers, only, are also detected at d*.

7.2. Example 2: Stars Data

We continue with a small example with a more complicated structure than that of Section 7.1. The data are taken from
Rousseeuw and Leroy (1987, p.27) and have been much used to illustrate the properties of various forms of robust regres-
sion. They form part of a Hertzsprung-Russell diagram of stars. This log-log plot has the effective surface temperature of the
star as the explanatory variable and (logged) light intensity as the response. A typical plot has around 30,000 stars which
fall into groups including “the main sequence”, “white dwarves” and “giants” of several kinds. However, in our example,
there are only 47 observations.

The left-hand panel of Figure 8 shows that the monitoring plot of BICW for the FS again increases almost linearly with
h, with a peak at h = 41. When LTS is monitored in steps of h corresponding to the addition of a single observation, the
peak is at a bdp of 0.14, when the same six observations are deleted. In the plot the peak is well defined but is followed,
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Fig. 8. Monitoring plots of BICW using the FS. Left-hand panel, stars data; right-hand panel, transformed balance sheet data.
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Fig. 9. Stars data. Left-hand panel; least squares regression lines: dashed line, all observations; continuous line, four extreme outliers deleted; fine-dashed
line, six observations deleted. Right-hand panel, monitoring plot of scaled FS residuals; h' = 41.

as bdp decreases, by a small decline and then an increase, a more complicated shape than we have seen before, which is
caused by masking. The structure of the data and the nature of the outliers is clarified by the FS analysis. The left-hand
panel of Figure 9 shows a scatterplot of the data and three different least squares regression line. There are four obvious
outliers at x values remote from the rest of the data. These four observations cause the regression line to have a slight
positive gradient. When they are deleted the slope of the regression line is negative, becoming more so when two further
outliers are deleted. This is the regression line produced by LTS and the FS combined with monitoring BICW. The right-hand
panel of the figure is a forward plot of the scaled FS residuals. The deletion of 6 outliers follows from the value of 41 for
hf, at which point the groups of extreme and intermediate outliers are well separated. The transition between the regions
of robust and non-robust estimation is clear.

We now turn to MM-estimation. The monitoring plot of BICW, gives a value of 0.82 for effi (it is 0.86 for the two
hard-trimming methods). For S-estimation the value of df is 0.25, appreciably greater than that from hard trimming. The
monitoring plots of BICW, for both MM and S-estimation show a similar shape to that for the FS; a peak followed by a
decline and then an increase. To interpret these maximum values we look at monitoring plots of the weights. Those for MM-
estimation are in the left-hand panel of Figure 10. This shows that the four extreme outliers are detected at an efficiency of
0.98. However, the weights for the two intermediate outliers decrease very slowly as the efficiency decreases, all six outliers
receiving sufficiently small weights to be detected only when eff = 0.64. Just four outliers are detected at eff'.

For S-estimation d' = 0.25 and d* = 0.33. The monitoring plot of the weights for S-estimation in the right-hand panel of
Figure 10 shows that the four extreme outliers have a weight < 0.01 from a bdp of 0.17. At 0.25 (d') five observations have
small weights and for d < 0.32 six observations are detected as outlying. So d* finds the same outliers as the hard trimming
methods.

7.3. Example 3: Balance Sheet Data

Our final example has more observations and several explanatory variables. The data are taken from a larger set giving
balance sheet information on limited liability companies. The response is profitability of individual firms in Italy. There are
998 observations with positive response and 407 with negative response, making 1,405 observations in all. There are five

explanatory variables which are measures of financial properties of the firms, the two most important being the ratio of
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Fig. 10. Stars data. Monitoring plot of weights W;. Left-hand panel MM-estimation; efﬁ = 0.82. Right-hand panel S-estimation with scale estimate &,;
d* =0.33,d" =0.25.
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Fig. 11. Balance sheet data. Zooms of monitoring plot of weights w;. Left-hand panel MM-estimation; efﬁ = 0.99. Right-hand panel S-estimation with scale
estimate 64; d* = 0.13,d" = 0.02.

labour cost to value added and the ratio of tangible fixed assets to value added. The aim is to explain the profitability by
regression on the five explanatory variables.

The data were introduced by Atkinson et al. (2021) who give further details. They show that the data need to be trans-
formed to achieve approximate normality. Since 407 of the observations are negative, they used an extension of the trans-
formation of Yeo and Johnson (2000). Atkinson et al. (2021) found that the positive observations should have a power
transformation with parameter value 0.5, whereas the negative observations required a value of 1.5. We work throughout
with this transformation.

The right-hand panel of Figure 8 shows the monitoring plot of BICW from the FS. This is similar in shape to those in
Figure 5 for the two smaller sets of data. In this case there is slight curvature as the value of BICW increases with h, with
a sharp peak. The maximum occurs when h = 1396. For LTS, again not shown, the maximum is at d = 0.007 when again
h = 1396 (above d = 0.01 a finer grid of values in steps of 0.001 was used for monitoring). The indication is that there are
only nine outliers, that is less than 1%. Figure 14 of Atkinson et al. (2021) has scatter plots of the residuals and shows the
effect of outliers on the estimated parameters of the linear model.

For MM-estimation monitored over efficiency steps of 0.01, efff = 0.99. Monitoring over a finer grid shows that the value
of BIC, continues to increase to eff = 0.999 before decreasing sharply when eff = 1. The left-hand panel of Figure 11 shows
that only three observations have zero weight at effl = 0.99. Although the figure suggests a group of nine residuals with
small weights that seems separate from the other residuals, all nine do not have zero weight until eff has decreased to 0.95.

The results for S-estimation are in the right-hand panel of the figure. For these data d = 0.02. The figure shows that
at this value of bdp only one observations has weight < 0.01. The value of d* is a much larger 0.13. At this value all the
nine outliers are the only observations with small weights, so, for this example, S-estimation of this form agrees with hard
trimming.

7.4. Summary of Analysis of Examples

Table 3 shows the number of outliers detected by the hard and soft trimming procedures of our paper when applied
to the examples in this section. All, apart from MM, find the three introduced outliers in the contaminated illness data.
S-estimation using the value d* (13) agrees with the two hard trimming methods, although the parameter estimates are
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Table 4
Comparison of values of the bdp d maximizing three forms of BIC for analysis of the examples of Sect. 7 using S-estimation.
Estimated Contaminated Stars Balance

Measure Maximum Illness Data Data Sheet Data
BICW LTS 0.07 (h =50) 0.14 (h=41) 0.007 (h = 1396)
BICW FS h =50 h =41 h=1396
BICW, dt 0.14 0.25 0.02
BICL d 0.15 0.24 0.02
BICR df 0.24 0.33 0.03
BICW, d* 0.23 0.33 0.128
BICL d* 0.23 0.33 0.128
BICR d* 0.23 0.35 0.133

found with more trimming, that is a higher bdp, than those of the hard trimming methods. Both MM-estimation with efﬁ
and S-estimation using df appear, on this evidence, less reliable than hard trimming.

8. Comparisons and Extensions

In the appendix we describe two further forms of BIC for outlier detection using soft trimming. The starting point is the
robust criterion for regression model selection of Maronna et al. (2019). This uses the quantity 2p of Akaike’s AIC (Akaike,
1974) to penalize increasingly complex models. To form a similar BIC for outlier detection we replace this penalty with that
of Section 3.1, that is k(p, n) = plogn. We call the resulting robust criterion BICR and define it in Eq. (A.4). An expression
for this criterion that is closer in form to BICW, is found by Taylor series linearisation of BICR. In (A.6) this is called BICL.

Table 4 provides a comparison of the performance of these two further forms of BIC when they are used with S-
estimation in the analysis of the three examples of Section 7. The table gives the maximizing values of both d' and d*,
together with, for reference, the corresponding results from hard trimming.

The purpose of the data analyses in this paper is to identify outliers and to provide efficient parameter estimates for the
non-outlying data. In the case of LTS and S-estimation this leads directly to finding the smallest bdp value at which the
outliers are excluded from the analysis. The first two lines of Table 4 show that LTS and the FS find values of bdp smaller
than those from the soft trimming procedures based on S-estimation. Within the soft trimming methods, the three forms
of BIC provide similar values of d and d*, except for the higher value of d' from BICR for the contaminated illness data.
We therefore, if soft trimming is required, suggest the use of BICW,, the properties of which have been more thoroughly
explored in this paper.

We also tested robustness to the choice of p function. As an alternative to the Tukey biweight we used the power
divergence p function p(u) = 1 — exp(—au?/2), where « is the parameter controlling breakdown point and efficiency. Plots
such as Figure 5 of Riani et al. (2020) indicate that there is little difference in asymptotic efficiency and breakdown point
between this o function and the Tukey biweight. The simulation results showed that BICW, continued to perform best
although the results gave slightly larger values of df and d* than those of Table 4. Tukey’s biweight is to be preferred for
soft trimming, but flexible hard trimming, either from the FS or monitoring LTS, is to be preferred overall.

9. Discussion

Flexible hard trimming combined with the information criterion BICW provides clear identification of outliers. For soft
trimming our results indicate that BICW,, is the preferred form of information criterion when S-estimation is used, which
is to be preferred to MM-estimation.

The outliers identified by applying BICW to the results of LTS or the FS agree with those in our previous analyses using
significance levels and the properties of order statistics. For the three examples the FS analyses are respectively given by
Atkinson et al. (2021), Riani et al. (2014b) and Atkinson et al. (2020). Here, in contrast, we run a single search through the
data and monitor the value of the appropriate BIC, the maximum indicating which observations are outliers. The complicated
rule for determining significance of potential outliers is circumvented.

The calculations for the forward search only require updating a regression that starts from a small number of obser-
vations. This is computationally much simpler than the implementation of LTS we have used (see Section 6) in which an
optimum solution has to be found for each h, as it also is than monitoring MM- or S-estimation, where numerical optimiza-
tions are required for each value of eff or d. For large data sets we can use the results of Torti et al. (2021) which extend
the FS to moving forward by adding batches of k > 1 observations.

We have restricted our attention to the classical case of the Tukey-Huber contamination model with fewer than 50%
contaminated observations. It is important that the FS can be adapted also to the case of more than 50% contamination,
when this is physically meaningful, for example in clustering (Cerioli et al., 2019).

The forms of BIC we have developed for the automatic detection of outliers do not include significance tests. However,
significance testing may be important once the outliers, if any, have been detected (Cerioli and Farcomeni, 2011). The in-
clusion of least squares with h =n in the monitoring ensures that the models we consider include one in which outliers

203



M. Riani, A.C. Atkinson, A. Corbellini et al. Econometrics and Statistics 29 (2024) 189-205

are not deleted. Both diagnostic plots, such as those of Section 7, and significance testing will be part of the determination
of the importance of any outliers; they may be random, their effect being to reduce the accuracy of conclusions drawn
from the data or they might indicate, in a medical context, a group of patients that responds differently to treatment. Cox
(2020) dissects forms of statistical significance appropriate to a variety of data analytical tasks. Finally, we see a place for
our results in automatic model selection as an extension to the use of conventional BIC to cover the presence of outliers.
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Appendix A. Other Forms of Robust BIC for Soft Trimming
Maronna et al. (2019, p.137) derive a robust form of C, for model selection. We now extend their approach to provide

two further versions of BIC for soft downweighting.
Akaike’s non-robust Final Prediction Error, FPE, for least squares regression is written in (5.37) of Maronna et al. (2019) as

152 2p
FPE_Hl;e,- (1+7), (A1)

where ¢; = y; —xinB. Then R(B) =¥, e? and FPE = {R(B)/n}(1 +2p/n).
Maronna et al. (2019) obtain a robust criterion for regression model selection starting from (A.1) in which least squares
is replaced, in our case, by S-estimation. The corresponding robust version of FPE (A.1) is

1< e\ pA
RFPE = - ;p(g) 0 (A2)
where
~ 1 n e; 2 A 1 n /(€

i=1

with ¥ (u) = p’(u).

The RFPE criterion (A.2) is for the comparison of regression models. We take the form of the linear model as given and
are interested in monitoring the behaviour of BIC as the value d of the breakdown point of the robust method varies. To
develop this novel form of BIC we rewrite (A.2) with the BIC penalty and obtain

; R
%Zp(?)Jriplog". (A3)
i=1

o 2B n
Multiplication by —n yields the robust BIC

BICR:—;p(g>—;E{er;u—w,-)}logn. (A4)

To see the relationship between BICR and the BIC for hard trimming in (7) we rewrite (A.3) as

_ A 1 plogn
p{1+§2pp o8 } (A5)
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n
where p = >~ p(e;/6)/n. Taylor expansion of the logarithm of (A.5) yields

i=1
A1 plogn
B2p n

Multiplication by —n and inclusion of the penalty for downweighting used in (A.4) gives the approximate BIC

logp +

_ 05A !
BICL = —nlogp — 75 p+ Z(l —w;) ¢ logn. (A.6)
i=1

The relationship between BICL and BICR depends on the Taylor expansion. For asymptotic equivalence we require that the
quantity (A/B){(plogn)/n} decrease with n. Since the asymptotic value of A/B is finite (Maronna et al., 2019, Chapter 10),
we only require that the limit of (plogn)/n — 0 with n, which it does for models in which the number of parameters is not
a function of n. Observations which come in blocks of fixed sizes, each of which introduces a new parameter, such as mixed
pairs (Cox and Hinkley, 1974, p.17), require special treatment. A model with random effects for blocks is one possibility.
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