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Abstract
We develop quantile regression methods for discrete responses by extending Parzen’s definition of marginal mid-quan-

tiles. As opposed to existing approaches, which are based on either jittering or latent constructs, we use interpolation and

define the conditional mid-quantile function as the inverse of the conditional mid-distribution function. We propose a

two-step estimator whereby, in the first step, conditional mid-probabilities are obtained nonparametrically and, in the

second step, regression coefficients are estimated by solving an implicit equation. When constraining the quantile

index to a data-driven admissible range, the second-step estimating equation has a least-squares type, closed-form

solution. The proposed estimator is shown to be strongly consistent and asymptotically normal. A simulation study

shows that our estimator performs satisfactorily and has an advantage over a competing alternative based on jittering.

Our methods can be applied to a large variety of discrete responses, including binary, ordinal, and count variables.

We show an application using data on prescription drugs in the United States and discuss two key findings. First, our

analysis suggests a possible differential medical treatment that worsens the gender inequality among the most fragile

segment of the population. Second, obesity is a strong driver of the number of prescription drugs and is stronger for

more frequent medications users. The proposed methods are implemented in the R package Qtools. Supplemental

materials for this article, including a brief R tutorial, are available as an online supplement.
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1 Introduction
In its classical formulation,1 quantile regression (QR) provides a distribution-free approach to the modelling and estimation
of quantile treatment effects2 (QTEs) for continuous response variables. QR has become a successful analytic method in
many fields of science because of its ability to draw inferences about individuals that rank below or above the population
conditional mean. The ranking within the conditional distribution of the outcome can be considered as a natural index of
individual latent characteristics which cause heterogeneity at the population level.3 The value of estimating QTEs in
medical and public health research has been illustrated in several studies.4–11

While most of the progress in QR methods has revolved around continuous responses, relatively less contributions have
been made in the discrete case so far. Discrete response variables are ubiquitous in medical research and the literature is
arguably dominated by generalized linear models.12 The reasons are manifold and include convenient interpretation of the
regression coefficients, e.g., as (log) odds ratios in logistic regression or (log) rate ratios in Poisson regression, universal
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availability in statistical software, and the benefits of a well-developed, unifying maximum likelihood theory. However,
research has been increasingly directed toward the development of nonparametric (distribution-free) methods to overcome
situations in which traditional approaches are unsatisfactory or, more in general, when the goal of the inference transcends
the conditional mean of the response.

QR for discrete responses presents some hurdles. Major hindrances include lack of a general theory for handling dif-
ferent types of discreteness, practical estimation challenges, and the troublesome asymptotic behaviour of sample quantiles
in the presence of ties. Thus, it is not surprising that existing approaches to discrete QR rely on some notion of continuity,
either postulated or artificially induced. Early works in the former category date back to the 1950s.13

Prominent in the econometric literature, maximum score estimation deals with conditional median models of
binary14–16 and ordered discrete17 response variables. More recently, Kordas18 extended Horowitz’s16 estimator for
binary outcomes to quantiles other than the median. In the maximum score estimation approach, the key assumption
is the existence of a continuous latent variable, say Y ∗, which undergoes the working of a threshold mechanism result-
ing in the observable binary outcome Y = I(Y ∗ > 0), where I(·) denotes the indicator function. The conditional quan-
tiles of the observable outcome are obtained as transformed quantiles of the latent outcome. However, maximum score
estimation is computationally expensive as it involves nonconvex loss functions. Jittering is another strategy used for
quantile estimation with discrete responses. A (pseudo)continuous variable, say Z, is obtained by adding random
noise, say U , to the observable discrete outcome, i.e. Z = Y + U . Estimation then proceeds by applying standard algo-
rithms for convex quantile loss functions (e.g., linear programming) and, successively, by averaging the noise out.
This approach, which has been adopted for modelling count19 and ordinal20 response variables, may lack generality
as it requires that adjacent values in the support of Y are equally spaced. Another estimation method for quantiles of
count data has been recently proposed.21 An approximation to continuity is introduced in the sense that the response
becomes ZE = Y + E(U ), where E(U ) = 0.5. As explained by the authors, the resulting estimator is asymptotically
equivalent whether it is applied to ZE or the jittered response Z as defined above. Efficiency gains of this approach
derive from the parametric modelling of a sequence of quantiles, but they are offsetted by the risk of overfitting21

and the inability to model a single quantile.
For the sake of completeness, we briefly mention possible alternatives. Recently, Chernozhukov et al22 proposed

inference methods to construct simultaneous confidence bands for quantile and quantile effect functions of possibly
discrete random variables. However, their study does not provide any strategy for regression modelling or point esti-
mation. Other proposed methods for estimating non-central summaries of discrete responses include M-QR.23,24

Unfortunately, conditional M-quantiles suffer from a lack of interpretability as their relationship with conditional
quantiles is obscure. They also depend on global properties of the parent distribution, despite they attempt to describe
a local property of such distribution.25 Another class of models that may be used to estimate conditional quantiles can
be collectively referred to as distributional regression. Whether distributional regression is used within a non-, semi-
or fully parametric framework, the common goal is to model the conditional distribution function (CDF) as flexibly as
possible by means of covariate-dependent distributional parameters. For example, covariates may enter into the model
via parameters related to the location, scale, and shape of the distribution.26 While the conditional quantile function
(QF) can be obtained by inverting the conditional CDF (though in general this is not guaranteed to yield an analytical
expression), the former will typically depend on the regression parameters in a complicated (often implicit and non-
linear) fashion. That is, distributional regression parameters may not give a simple and straightforward summary of the
QTE, in contrast to the parameters of QR models.2 Finally, in the hope of remedying a misconception that has crept
into the literature of QR, we note that the method proposed by Bottai et al,27 despite being called ‘logistic quantile
regression’, is applied to continuous responses only and has nothing to do with conditional quantiles of binary
responses.

In this paper, we build on mid-quantiles28 to introduce an alternative estimation approach for conditional quantiles of
discrete responses. Sample mid-quantiles, which are based on essentially the same idea of the mid-p-value,29 offer a uni-
fying theory for quantile estimation with continuous or discrete variables and are well-behaved asymptotically.30 In our
approach, we develop a two-step estimator that can be applied to a large variety of discrete responses, including binary,
ordinal, and count variables, and is shown to have good theoretical properties. In a simulation study, we gather empirical
evidence that conditional mid-quantile estimation is more efficient than jittering. However, this evidence is contextual as is
based on a single simulated scenario and may not be generalizable.

The rest of the paper is organized as follows. In the next section, we discuss modelling, estimation, and theoretical prop-
erties of conditional mid-quantile estimators, with technical details on inference given in the online Supplemental material.
In Section 3, we report the results of a simulation study to assess bias and efficiency of the proposed estimator, as well as
confidence interval coverage. We also illustrate an application to data on prescription drugs usage in the United States. We
conclude with final remarks in Section 4.
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2 Methods

2.1 Marginal mid-quantiles
Let Y be a discrete random variable with probability mass function mY (y) = Pr(Y = y) and cumulative distribution func-
tion (CDF) FY (y) =

∑
u≤y mY (u). The pth quantile of Y , denoted by ξ p, is defined as ξ p ≡ inf{y ∈ R :FY (y) ≥ p} for any

0 < p < 1. We may define the QF of Y , QY (p), as the generalized inverse of the CDF of Y, that is QY (p) ≡ F−1
Y (p). In the

discrete case, the CDF is not injective, thus a discrete QF is not the standard inverse of the CDF. Now let Y1, Y2, . . . , Yn be
an independent sample of size n from the population FY . The sample CDF is defined as F̂Y (y) = n−1

∑n
i=1 I(Yi ≤ y), y ∈ R,

while the (ordinary) sample QF, defined as the inverse of the sample CDF (see for example Hyndman and Fan31 for a
detailed overview of alternative sample quantiles). The sample QF, too, is discrete.

In general, sample quantiles as defined above may not be consistent for the population quantiles when the underlying
distribution is discrete.32 Additionally, the sample median Q̂Y (0.5) = Y(⌈n/2⌉) lacks asymptotic normality if Y is discrete.33

Throughout this article, we use ⌈x⌉ (⌊x⌋) to denote the smallest (largest) integer that is larger (smaller) than or equal to x.
We now introduce the mid-CDF,28,34 a modification of the standard CDF that plays an important role in discrete mod-

elling and in samples with ties. For a random variable Y with CDF FY (y), the function

GY (y) ≡ Pr(Y ≤ y)− 0.5 · Pr(Y = y) (2.1)

is called mid-distribution function (mid-CDF). Since Y is discrete, GY (y) is a step function (a downward-shifted version of
FY (y)). Note that, if Y were instead continuous, then GY (y) would reduce to FY (y) since, in that case, Pr(Y = y) = 0.

Further, let SY = {y1, . . . , ys}, with y j < y j+1 for all j = 1, . . . , s− 1, be the set of s distinct values in the population
that the discrete random variable Y can take on, with corresponding probabilities p1, . . . , ps. We also define the mid-

probabilities π1 = p1/2 and π j = G(y j) =
∑ j−1

u=1 pu + p j/2, for j = 2, . . . , s. The following function

HY (p) =

y1, if p < π1
y j, if p = π j, j = 1, . . . , s
(1− γ)y j + γy j+1, if p = (1− γ)π j + γπ j+1

0 < γ < 1, j = 1, . . . , s− 1
ys, if p > πs

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2.2)

is called mid-QF.30 If s = ∞, then the last category is suppressed. Examples ofHY (p) when Y is discrete uniform, count, or
binary are given in Figure 1. The mid-QF is piecewise linear and connects the points (π j, y j) (dashed lines in Figure 1). One
can verify that HY{GY (y j)} = y j, j = 1, . . . , s. In general, mid-quantiles cannot be obtained by inverting GY (y) at points
y∉SY . However, we can define Gc

Y (y), the continuous version of GY (y),
34 as the piecewise linear function that connects the

values Gc
Y (y j) = π j, j = 1, . . . , s, and satisfies Gc

Y (y) ≡ H−1
Y (y), for all y ∈ R. Related to this, we have the equivariance

property h−1{Hh(Y )(π j)} = HY (π j), j = 1, . . . , s, for a monotone transformation h. Equivariance of HY (p) no longer
applies if HY (π j) < p < HY (π j+1) unless h is linear.

Figure 1. True quantile function (grey solid line) and mid-quantiles (black filled triangles). Left: Discrete uniform on (1,6). Centre:

Poisson with mean 3. Right: Bernoulli with probability 0.3.
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The sample mid-CDF corresponding to (2.1) is ĜY (y) = F̂Y (y)− 0.5 · m̂Y (y), where m̂Y (y) = n−1
∑n

i=1 I (Yi = y) is the
sample relative frequency of y. To define the sample mid-quantiles, we need to introduce some more notation. Let z j,
j = 1, . . . , k, be k distinct values that occur in the sample, with z j < z j+1 for all j = 1, . . . , k − 1, and let p̂ j = m̂Y (z j),
j = 1, . . . , k, be the corresponding relative frequencies. Then ĤY (p) = (1− γ)z j + γz j+1, where the index j = 1, . . . , k −
1 is such that p = (1− γ)ĜY (z j)+ γĜY (z j+1), 0 ≤ γ ≤ 1, and ĜY (z j) = F̂Y (z j)− 0.5 · p̂ j. Moreover, ĤY (p) = z1 if p <
ĜY (z1) and ĤY (p) = zk if p > ĜY (zk ). A natural estimator of Gc

Y (y) is then Ĝc
Y (y) = (1− γ)π̂ j + γπ̂ j+1 for z j ≤ y ≤ z j+1.

In samples with ties, ĤY (p) is the piecewise linear function connecting the values ĤY{ĜY (z j)} = ĤY{Ĝc
Y (z j)} = z j. It

has been shown that if the underlying distribution FY is absolutely continuous, then the sample mid-quantiles have the
same asymptotic properties as the ordinary sample quantiles.30 More importantly, if FY is discrete, then the sample mid-
quantiles are consistent estimators of the population mid-quantiles and their sampling distribution is normal.30

As far as interpretation goes, mid-quantiles can be viewed as fractional order statistics.35,33 A mid-quantile is a quantile
of Y when p = π j, j = 1, . . . , k. Otherwise, when p ≠ π j, its interpretation involves an underlying form of continuity that
captures the smooth progression from one quantile to the next. It is in this spirit that Wang and Hutson36 proposed smooth
quantiles for discrete distributions based on fractional-order statistics. Compared with ordinary sample quantiles, it can be
argued that mid-quantiles offer a sensible approach to quantifying the differences between discrete distributions. For
example, consider two binary samples with different proportions of successes, {0, 0, 0, 0, 1} and {0, 0, 0, 1, 1}.30 The
sample median is 0 in both cases; the sample mid-median corresponds to the proportion of 1’s, that is, 1/5 in the
former sample, but 2/5 in the latter. In this example, the mid-median helps discriminate between the two samples in an
intuitive way (as formally shown in Section 2.2, our proposed conditional mid-median inherits the same properties).

Another advantage of mid-quantiles is that they can be easily relabelled to obtain the (ordinary) quantiles. Suppose
ĤY (p) = z j and the goal is to recover the sample quantile ξ̂ p. First, the mid-probabilities are obtained from the inversion
Ĥ−1

Y (z j) = ĜY (z j), while the sample CDF is calculated recursively from F̃(z j) = 2ĜY (z j)− F̃Y (z j−1), j = 1, . . . , k, with
the convention that F̃(z0) = 0. This leads to ξ̂ p = z j for F̃(z j−1) < p ≤ F̃(z j), j = 1, . . . , k. Otherwise, if ĤY (p) = z ≠ z j,
then one takes Ĥ−1

Y (z j∗ ) where z j∗ is the largest of the z j’s that satisfy z > z j. This is an important property that sets mid-
quantiles apart from so-called ‘quantile-like’ alternatives like expectiles. The latter have a non-trivial relationship with
quantiles37 and require non-trivial relabelling procedures that may lead to poor approximations on the tails.25

M-quantiles, which represent a generalization of expectiles, suffer from a similar limitation.

2.2 Conditional mid-quantiles
Analogously to (2.1), we define the conditional mid-CDF as

GY |X (y|x) ≡ FY |X (y|x)− 0.5 · mY |X (y|x) (2.3)

where Y is a random variable with image SY ⊂ R and X is a q-dimensional vector of covariates, which may include a
constant equal to one for the intercept, FY |X (y|x) = Pr(Y ≤ y|X = x), and mY |X (y|x) = Pr(Y = y|X = x). Although the
definition of conditional mid-CDF applies to both continuous and discrete response variables (as in the case of the marginal
mid-CDF (2.1)), we assume that SY = {y1, . . . , ys} is a finite or countably infinite (s = ∞) subset ofR. In particular, Y can
be binary, ordinal, or count, with positive or negative values, not necessarily equally spaced. Values need not be integers
either. However, we do exclude nominal variables with more than two categories from the application of (2.3) as they do
not have a natural ordering.

We use the conditional mid-CDF (2.3) as the springboard for defining conditional mid-quantiles. Let π j = GY |X (y j|x)
(for the sake of simplicity, we have suppressed the dependence on x from π j’s notation). The conditional mid-QF HY |X (p)
is defined as the piecewise linear connecting the valuesG−1

Y |X (π j|x), j = 1, . . . , s, for given x. We assume a quantile-specific
model that is linear on the scale of h, i.e.,

Hh(Y )|X (p) = x⊤β(p) (2.4)

where h is a known monotone and differentiable ‘link’ function, and β(p) is a vector of q unknown regression coefficients
for a given p ∈ (0, 1). In our approach, h may simply be the identity or a linear transformation, the logarithmic function –
which is typically used in the modelling of counts,19 the logistic function, or belong to a family of flexible transformation
models.38–41 These often involve the Box-Cox42 or Aranda-Ordaz43 families. As in the marginal case, conditional mid-
quantiles cannot be obtained by inverting GY |X (y|x) at points y∉SY . Again, we define the piecewise linear function
Gc

Y |X (y|x) that connects the values Gc
Y |X (y j|x) = π j, j = 1, . . . , s, and satisfies Gc

Y |X (y|x) ≡ H−1
Y |X (y|x), for all y ∈ R.

The QTE interpretation of the jth coefficient β j(p) is immediate if x j is discrete. Otherwise, it can be defined in terms of
the partial derivative of H . For example, if h is linear and there are no additional terms that depend on x j (e.g., interactions,
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quadratic terms), then the QTE associated with x j is given by

∂HY |X (p)
∂x j

= β j(p)

In Figure 2, we provide a simple example using the heteroscedastic model Y = ⌊x⌋ + ⌊x+ 1⌋ϵ, for x ≥ 0, where ϵ is dis-
crete uniform between 1 and 6 (die rolling). As a function of p, for fixed x, mid-quantiles follow the uniform model we
already seen in Figure 1. As a function of x, for fixed p, we obtain our proposed mid-QF (2.4). In particular, the first
and third mid-quartiles have equations H (0.25) = 2+ 3x and H(0.75) = 5+ 6x, respectively, which entail a QTE
equal to 3 and 6, respectively.

Our definition of conditional mid-quantiles is general as it applies to any type of discrete response variable that can
be ordered. An interesting special case is when Y is binary, thus SY = {0, 1}. According to (2.3), the mid-CDF is
then given by GY |X (y|x) = (y+ 1− μ(x))/2, where μ(x) = Pr(Y = 1|X = x). Therefore, π1 = GY |X (0|x) = 0.5−
0.5μ(x) and π2 = GY |X (1|x) = 1− 0.5μ(x). By definition, mid-quantiles are equal to 0 if p < π1 and to 1 if p > π2.
Otherwise, HY |X (p) = (1− γ)y1 + γy2 = γ for p = (1− γ)π1 + γπ2. From the latter expression we get
γ = (p− π1)/(π2 − π1) = 2p− 1+ μ(x). In summary, we obtain the following conditional mid-QF

HY |X (p) =
0 if p < π1
2p− 1+ μ(x) if π1 ≤ p ≤ π2
1 if p > π2

⎧⎪⎪⎨
⎪⎪⎩

Therefore the conditional mid-median is exactly equal to μ(x), while all the other conditional mid-quantiles are shifted by
2p− 1.

2.3 Estimation
Consider a sample (Xi, Yi), i = 1, . . . , n, with corresponding observations (xi, yi). Also, let z j, j = 1, . . . , k, be the jth
distinct observation of Y that occurs in the sample, with z j < z j+1 for all j = 1, . . . , k − 1.

Estimation of model (2.4) proceeds in two steps. In the first step, we estimate the mid-CDF. Let

ĜY |X (y|x) ≡ F̂Y |X (y|x)− 0.5 · m̂Y |X (y|x) (2.5)

denote the sample equivalent of (2.3). The estimation of FY |X plays a key role in our approach. In our formulation, we
require an estimator that can be applied to discrete responses and that admits continuous and discrete covariates (or a
mix thereof). In line with the nonparametric flavour of our modelling strategy, we considered the conditional CDF estima-
tor proposed by Li and Racine.44 This takes the form

F̂Y |X (y|x) = n−1
∑n

i=1 I(Yi ≤ y)Kλ(Xi, x)

δ̂X (x)
(2.6)

where Kλ is the (product) kernel with bandwidth vector λ and δ̂X (x) is the kernel estimator of the marginal density of X . The
implementation of (2.6) involves choosing kernel types, as well as determining a number of tuning and estimation para-
meters. In our simulation study (Section 3), we adopted the default settings of the np package,45 which include, for

Figure 2. True quantile function (grey solid line) and mid-quantiles (black filled circles, triangles and squares). Left: Quantiles as a

function of p by values of x ∈ {0, 1, 3}. Right: Quantiles as a function of x by values of p ∈ {0.25, 0.75}.
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example, least-squares cross-validation for bandwidth selection.46 Since we obtained satisfactory empirical results using
those settings, we will not dwell on this matter but instead refer the reader to the relevant literature for technical and imple-
mentation details.44–48

By applying (2.6) to the sample observations, we obtain F̂Y |X (z j|x), j = 1, . . . , k, and m̂Y |X (z j|x) =
F̂Y |X (z j|x)− F̂Y |X (z j−1|x), which we plug into (2.5) to obtain ĜY |X (z j|x). Here, we set m̂Y |X (z1|x) = F̂Y |X (z1|x), hence
ĜY |X (z1|x) = 0.5 · F̂Y |X (z1|x).

We note that, unfortunately, nonparametric estimation of FY |X entails a loss of performance when the dimension of X is
large, the design is sparse, or both. In these cases, a semiparametric approach may be preferred. A natural choice is to obtain
F̂Y |X (z j|x) as the estimate of the binomial probability Pr{I(Y ≤ z j)|x}, for j = 1, . . . , k. This idea was indeed considered
by some authors49,50 to address the curse of dimensionality of nonparametric estimators and, while originally a logit esti-
mator was proposed, in principle any other link function can be employed. Since applying the binomial estimator is tan-
tamount to fitting k separate binomial regressions, one for each value z j, one must verify whether the estimates F̂Y |X (z j|x)
are monotone. Monotonicity can be imposed a priori50 or a posteriori.51

Now we move to the second step of model estimation. For a given x, define Ĝc
Y |X (y|x) as the function interpolating the

points (z j, ĜY |X (z j|x)), where the ordinates have been obtained in the first step. The function Ĝc
Y |X estimates Gc

Y |X and is the
conditional extension of Ĝc

Y introduced in Section 2.1. The goal is to estimate β(p) in (2.4) by solving the implicit equation
p = Ĝc

Y |X (η(p)|x), where η(p) = h−1{x⊤β(p)}. Our objective function and estimator are thus given by

ψn(β; p) = n−1
∑n
i=1

p− Ĝc
Y |X ηi|xi

( ){ }2
(2.7)

where ηi = h−1{x⊤i β}, and

β̂(p) = argmin
β∈Rq

ψn(β; p) (2.8)

respectively. This estimation approach, which is an extension of the ‘inverse-CDF’ technique for marginal quantiles, has
been recently proposed by De Backer et al52 for fitting censored QR models. They, too, approach nonparametrically the
estimation of the CDF (though in the continuous domain) via a double-kernel estimator akin to that of Li and Racine.44 In
summary, we echo De Backer et al’s52 advocacy of the squared distance for its computational advantages and of the
double-kernel estimation for its asymptotic and finite sample efficiency gains.

We can make (2.8) explicit by using the following linear interpolating function:

Ĝc
Y |X ηi|xi

( ) = b ji (ηi − z ji )+ π̂ ji z ji ≤ ηi ≤ z ji+1

where b ji = (π̂ ji+1 − π̂ ji )/(z ji+1 − z ji ) and π̂ ji = ĜY |X (z ji |xi). The index ji = 1, . . . , k − 1 identifies, for a given
i = 1, . . . , n, the value z ji among the z’s such that ĜY |X (z ji |xi) ≤ p ≤ ĜY |X (z ji+1|xi). If we restrict p ∈ I , where I =
[maxiĜY |X (z1|xi), miniĜY |X (zk |xi)], then we find that our estimator, conditionally on π̂ = (π̂11 , . . . , π̂k1 , . . . ,
π̂1n , . . . , π̂kn)

⊤, has the form

β̂(p; π̂) = (X⊤X)−1X⊤u (2.9)

where X is a n × q matrix with ith row xi and u is a n × 1 vector with ith element h{[(p− π̂ ji )/b ji ]+ z ji}. It is straightfor-
ward to verify that (2.9) is a minimizer by plugging it into (2.7). The closed-form of (2.9) is, clearly, computationally con-
venient. Of course, one can still obtain an estimate of β(p) using (2.9), regardless of whether p is within the interval I .
However, when p∉I , all the elements of u such that π̂1i > p or π̂ki < p are ‘censored’, that is, constrained to be h(z1) or
h(zk ). As a result, the linear predictor of the mid-quantile model will flatten out if p approaches 0 or 1, with ‘slopes’
tending to 0 and the intercept tending to the sample minimum or maximum, at a speed that depends on the censoring
rate. This is a reasonable behaviour since it reflects all we can say about the relationship between Y and X when we
have little or no information. Note also that, in principle, one can consider other general minimizers of (2.7) should the
optimization problem become more complex (e.g., because of the addition of nonlinear constraints or penalties). This is
a topic for future research.

We can derive the variance-covariance of β̂(p) via the total variance law53 as follows:

var β̂(p)
( ) = Eπ̂ varβ̂(β̂|π̂)

{ }
+ varπ̂ Eβ̂(β̂|π̂)

{ }
(2.10)

We estimate the first term in the right-hand side of (2.10) using a Huber-White variance-covariance estimator, which is

given by (X⊤X)−1X⊤DX(X⊤X)−1, where D = diag(ê21, . . . , ê
2
n) and êi = h(yi)− x⊤i β̂(p; π̂), i = 1, . . . , n. To obtain an

826 Statistical Methods in Medical Research 31(5)



estimate of the second term, we note that, by the delta method,

varπ̂ Eβ̂(β̂|π̂)
{ }

≈ ∇π̂ β̂(p; π̂)⊤var(π̂)∇π̂ β̂(p; π̂) (2.11)

The validity of (2.11) relies on regularity conditions on moments,54 which in our case are guaranteed by the asymptotic
normality established by Theorem 2. The expression for var(π̂) depends on the variance of the estimator F̂Y |X , which
we discuss further below. We omit the tedious algebra for the Jacobian ∇π̂ β̂(p; π̂), which can be easily obtained via numer-
ical differentiation. Also, note that the latter is carried out efficiently since the Jacobian is sparse, with sparsity no less than

1− [2n/(nk)2]. This follows from the fact that the ith partial derivatives of β̂(p; π̂) with respect to elements of π̂ with
indices other than ji and ji+1 are null (hence, there are at most 2n non-zero partial derivatives). The diagonal elements
of the nk × nk matrix var(π̂) are given by

var π̂ij
( ) = 1

4
var F̂Y |X (z j−1|xi)

{ }+ 1

4
var F̂Y |X (z j|xi)

{ }
+ 1

2
cov F̂Y |X (z j−1|xi), F̂Y |X (z j|xi)

{ }
,

i = 1, . . . , n, j = 2, . . . , k, and var(π̂i1) = 1
4 var{F̂Y |X (z1|xi)}. In the expression above, we can neglect the covariance

between F̂Y |X (z j|xi) and F̂Y |X (z j′ |xi), j ≠ j′, as this is asymptotically zero as shown in the proof of Theorem 2 (Section
2.5). This means that the off-diagonal elements of var(π̂) are also asymptotically negligible. Finally, the expression for
the variance of F̂Y |X is given elsewhere.44

We conclude this section by noting the we would arrive at the estimator (2.9) also by starting from the conditional exten-
sion of the marginal mid-quantiles in (2.2), say

HY |X=xi (p) =

y j1 , if p < π j1

y ji , if p = π ji , ji = 1, . . . , k
(1− γi)y ji + γiy ji+1, if p = (1− γi)π ji + γiπ ji+1

0 < γi < 1, ji = 1, . . . , k − 1, i = 1, . . . , n
y jk if p > π jk

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

The dependence of π ji , y ji and γi on i is the consequence of conditioning on xi. Clearly, one would need to calculate all the
mid-probabilities π j, j = 1, . . . , k, because the value of HY |X=xi (p), i = 1, . . . , n, depends on where p lies with respect to

the π j’s. However, if one starts from the implicit equation p = Ĝc
Y |X (η(p)|x) as we did, it becomes easier to work out the

asymptotic properties of the estimator using the objective function (2.7).

2.4 Prediction of conditional mid-quantiles and recovery of ordinary quantiles
So far, we have focused our attention on the β(p), which is and remains the primary goal of inference in our modelling
approach. However, it is immediate to obtain a prediction of the conditional mid-quantiles of Y conditional on X = x
with ĤY |X (p) = h−1(x⊤β̂(p)). The approximate sampling distribution of ĤY |X (p) is given in Corollary 2.1.

It might also be of some interest to know that we are able to recover ordinary conditional quantiles from the conditional
mid-quantiles. As this result represents a by-product of our models, we do not place it in direct competition with alternative
approaches,22 which may well be preferable to ours since ours is not specifically designed for such a purpose. The goal is to
relabel ĤY |X (p) to obtain an estimate of the (ordinary) conditional quantiles QY |X (p) ≡ inf{y ∈ R :FY |X (y) ≥ p}. Let us
denote such an estimate by Q̃Y |X (p). This can be achieved in few simple steps. Since the distribution function FY |X
has been already estimated in order to fit the mid-QR model, it is sufficient to plug x into F̂Y |X (y|x). The latter is used
to obtain ĜY |X (y|x) as described in the previous section. Successively, we identify the index j such that
ĜY |X (z j|x) ≤ p < ĜY |X (z j+1|x). If Y is a variable whose values are irregularly spaced, then one would naturally take
Q̃Y |X (p) = z j+1 if p > F̂Y |X (z j|x) or Q̃Y |X (p) = z j otherwise, with the understanding that Q̃Y |X (p) = z1 if p < F̂Y |X (z1|x).
If, on the other hand, Y is a variable with equally spaced values (e.g., a count), then we can take Q̃Y |X (p) = ⌈ĤY |X (p)⌉
if p > F̂Y |X (z j|x) or Q̃Y |X (p) = ⌊ĤY |X (p)⌋ otherwise, with the understanding that Q̃Y |X (p) = ⌈ĤY |X (p)⌉ if p < F̂Y |X (z1|x).
A demonstration is given in Figure 7. We do not pursue the calculation of standard errors for Q̃Y |X (p), which can be
derived from the distribution of ĤY |X (p) (Corollary 2.1), as it is not within our main interests.
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2.5 Theoretical results
We first show consistency of β̂(p) under general assumptions. We then provide its asymptotic distribution. Here, we assume
that the conditional CDF estimator of Li and Racine44 is used to obtain F̂Y |X (y|x). The identity matrix of order m will be
denoted by Im. The proofs of the theorems in this section are given in the Supplemental material.

Theorem 1. Generate n independent conditional responses from a discrete distribution with parameters satisfying (2.4).
Assume that the marginal density of the continuous covariates in X is strictly positive and that 0 < FY |X ( y|x) < 1. Assume
also that the kernel Kλ(X , x) in (2.6) is symmetric, bounded, and compactly supported, and that n

∏
j λj � ∞, while λj �

0 for all j = 1, . . . , q. For a fixed p ∈ (0, 1), let β̂( p) denote the solution in (2.8) and let β∗( p) be its population
counterpart.

Then, as n � ∞, supz|Ĝc
Y |X ( z|x)− Gc

Y |X ( z|x)| � 0. Additionally, ‖β̂( p)− β∗( p)‖ � 0 and |Ĥh(Y)|X ( p)−
Hh(Y)|X ( p)| � 0, for all p ∈ (0, 1).

Theorem 2. In addition to the assumptions in Theorem 1, assume that
Ĝc

Y |X ( h
−1( x⊤β)|x) is differentiable with respect to β. Assume also that the design matrix is full rank, that limn n−1XX⊤

exists and is a positive-definite matrix. Finally, assume that
��������
n
∏

j λj
√

(
∑

j λj)
2 = O(1). Then,

V (β∗( p))−1/2

��������
n
∏
j

λj

√
( β̂( p)− β∗( p)) � N(0, Iq) in distribution,

where V (β∗( p)) = J(β∗( p))−1D(β∗( p))J (β∗( p))−1,

J (β∗) = E{∇2
βψn(β; p)|β=β∗}, and D(β∗) = Var

{ ��������
n
∏

j λj
√

∇βψn(β
∗; p)|β=β∗

}
.

Corollary 2.1. The approximate sampling distribution of ĤY |X ( p) = h−1( x⊤β̂( p)) follows from the results in Theorems 1
and 2. Let Σ p = V(β∗( p))( n

∏
j λj)

−1 and let δ( b) = ∇βh−1( x⊤β)|β=b. Then for large n, the distribution of ĤY |X ( p) is
approximately normal with mean h−1( x⊤β∗( p)) and variance δ(β∗( p))⊤Σ pδ(β

∗( p)).

3 Results
In this section, we illustrate the performance of mid-QR on both simulated and real data. The application concerns prescrip-
tion drugs usage in the United States (US).

3.1 Simulation study
Data were generated according to six distinct models. The first four had the homoscedastic discrete uniform, heteroscedas-
tic discrete uniform, Poisson, and Bernoulli errors, respectively. Each of these four models was considered with either one
discrete covariate (1a, 2a, 3a, and 4a), or with two continuous covariates (1b, 2b, 3b, and 4b). The fifth model was defined
as the ratio of two Poisson random variables. Lastly, the response variable for the sixth model was randomly sampled (with
replacement) from the empirical (marginal) distribution of prescription drugs analysed in Section 3.2 and depicted in
Figure 5. While the responses generated with the first four models are equally spaced integers from standard, regular dis-
tributions, the last two provide instances of non-standard features like irregularly spaced values, fractional values,
zero-excess, and outliers. In symbols, data were generated as follows:

(1a) Y = ⌊1+ 2w⌋ + ϵ, where w ∼ DU(0, 5) and ϵ ∼ DU(1, 10);
(1b) Y = ⌊1+ 2w1 + w2⌋ + ϵ, where w1 ∼ U(0, 5), w2 ∼ 1/3χ23, and ϵ ∼ DU(1, 10);
(2a) Y = ⌊1+ 2w⌋ + ⌊w+ 1⌋ϵ, where w ∼ DU(0, 5) and ϵ ∼ DU(1, 10);
(2b) Y = ⌊1+ 2w1 + w2⌋ + ⌊w1 + 1⌋ϵ, where w1 ∼ U(0, 5), w2 ∼ 1/3χ23, and ϵ ∼ DU(1, 10);
(3a) Y = ϵ, where ϵ ∼ Poisson(μ), μ = exp (0.5+ 2w), and w ∼ DU(1, 3);
(3b) as in scenario (3a) with μ = exp (0.5+ 2w1 + 0.3w2), w1 ∼ U(1, 3), and w2 ∼ 1/3χ23;
(4a) Y = ϵ, where ϵ ∼ Bernoulli(μ), μ = 1/[1+ exp {− (3+ w)}], and w ∼ DU(0, 5);
(4b) as in scenario (4a) with μ = 1/[1+ exp {− (3+ w1 + w2)}], w1 ∼ U(0, 5), and w2 ∼ 1/3χ23;
(5) Y = ϵ1/(ϵ2 + 1), where ϵh ∼ Poisson(μ), h = 1, 2, μ = exp (0.5+ 1w), and w ∼ DU(1, 3);
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(6) Y is a discrete variable with values in SY = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,
169, 196, 225, 256, 289, 361, 400} and corresponding probabilities {5.0× 10−1, 1.8× 10−1, 9.6× 10−2, 5.4×
10−2, 4.9× 10−2, 3.4× 10−2, 2.4 × 10−2, 2.0× 10−2, 1.1× 10−2, 8.9× 10−3, 5.1× 10−3, 2.8× 10−3, 3.3× 10−3, 2.3 ×
10−3, 2.3× 10−3, 9.3× 10−4, 9.3× 10−4, 1.9× 10−3, 4.7× 10−4, 4.7× 10−4}, and w ∼ DU(1, 3),

where DU(a, b) and U(a, b) denote random variables with, respectively, discrete and continuous uniform distribution on
(a, b). Samples (yi, wi) of size n ∈ {100, 500, 1000} were independently drawn from each model for R = 1000 replica-
tions. We then fitted the linear mid-quantile model HY |X (p) = x⊤β(p) with data generated under models 1, 2, 5, and 6
(note, however, that the sampling probabilities under model 6 do not depend on w); the log-linear mid-quantile model
HY |X (p) = exp {x⊤β(p)} with data generated under model 3; and the logistic mid-quantile model HY |X (p) = [1+ exp {−
x⊤β(p)}]−1 with data generated under model 4. All models were estimated for seven deciles, p ∈ {0.2, 0.3, . . . , 0.8},
except the logistic model, which was estimated for the median only.

LetHi(pk ) ≡ HYi|Xi (pk ) denote the true mid-quantile at level pk for a given xi = (1, wi)
⊤ under any of the data-generating

models defined above and Ĥ (r)
i (pk ) be the corresponding estimate for replication r. We assessed the performance of the

proposed methods in terms of average bias and root mean squared error (RMSE) of the mid-QF, i.e.

1

R

∑R
r=1

n−1
∑n
i=1

Ĥ (r)
i (pk)− Hi(pk )

{ }

and

1

R

∑R
r=1

n−1
∑n
i=1

Ĥ (r)
i (pk)− Hi(pk)

( )2{ }[ ]1/2

respectively. We also report the average true mid-quantiles at n = 1000

�H(pk ) = n−1
∑n
i=1

Hi(pk)

as a term of comparison for assessing the relative magnitude of the bias. Finally, we calculated 95% confidence intervals to
assess coverage of the slope parameter in mid-quantile models for p ∈ {.3, .5, .7} when data were generated under scen-
arios 1a, 2a, and 3a. The corresponding standard errors were computed based on expression (2.10).

Estimated bias and RMSE of the proposed estimator are shown in Tables 1–6 for scenarios 1a, 2a, 3a, 4a, 5, and 6, and in
Supplemental Tables 1–4 for scenarios 1b, 2b, 3b, and 4b. The bias was, in general, small, never exceeding 2.3% of the
average mid-quantile for the homoscedastic discrete uniform model (1a and 1b), 3.3% for the heteroscedastic discrete
uniform model (2a and 2b), 0.6% for the Poisson model with a discrete covariate (3a), and 2.5% for the Poisson ratio
model (5). The estimated bias and RMSE of the proposed estimator for the Bernoulli model (4a and 4b) were extremely
small at all sample sizes. In contrast, the bias was relatively higher (up to 11% of the average mid-quantile) in the Poisson
scenario with continuous covariates (3b), although this issue was limited to the tail quantiles at smaller sample sizes. The
bias and RMSE for model (6) were notable at smaller sample sizes. In particular, the bias was larger at p = .6. This can be
explained by examining the mid-CDF in Figure 5. The function goes from 0.25 at y = 0 to just shy of 0.6 at y = 1.

Table 1. Bias and root mean squared error (RMSE) of predicted quantiles for data generated using the homoscedastic discrete uniform

model (1a).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.2 0.015 0.508 −0.023 0.221 −0.006 0.153 8.494

0.3 0.097 0.548 0.004 0.246 0.011 0.172 9.494

0.4 0.113 0.574 0.008 0.263 0.016 0.182 10.494

0.5 0.121 0.587 0.010 0.271 0.016 0.186 11.494

0.6 0.121 0.579 0.012 0.269 0.013 0.183 12.494

0.7 0.135 0.550 0.014 0.251 0.012 0.167 13.494

0.8 0.211 0.532 0.045 0.223 0.028 0.146 14.494
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Conditioning on w skews the distribution of β̂(0.6) since w is unrelated to the response (further investigation revealed that,
at p = .6, the estimator is median-unbiased). In general, both bias and RMSE decreased with n at approximately the
expected rate for all six models.

To appreciate how these results translate into model fitting, the estimated conditional mid-quantiles from all replications
and the average estimated conditional mid-quantiles (n = 1000) are shown in Figure 3 for scenarios 1b, 2b, and 3b, and in
Figure 4 for scenario 4b. All mid-quantiles are plotted as functions of w1, with w2 set equal to the median of 1/3χ23.

Table 2. Bias and root mean squared error (RMSE) of predicted quantiles for data generated using the heteroscedastic discrete uniform

model (2a).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.2 −0.417 1.689 −0.281 1.056 −0.071 0.791 14.737

0.3 −0.482 1.940 −0.389 1.108 −0.229 0.856 18.234

0.4 −0.397 2.038 −0.181 1.071 0.048 0.817 21.731

0.5 −0.444 2.100 −0.418 1.068 −0.297 0.810 25.228

0.6 −0.308 2.134 −0.322 1.138 −0.290 0.887 28.725

0.7 −0.073 1.933 −0.252 0.967 −0.168 0.724 32.222

0.8 0.484 1.864 0.273 0.817 0.259 0.594 35.719

Table 3. Bias and root mean squared error (RMSE) of predicted quantiles for data generated using the Poisson model (3a).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.2 0.232 3.369 0.190 1.848 0.226 1.552 243.938

0.3 0.711 2.921 0.482 1.476 0.492 1.199 247.933

0.4 0.554 2.794 0.340 1.358 0.377 1.037 251.596

0.5 0.862 2.892 0.635 1.434 0.642 1.144 254.593

0.6 0.891 2.983 0.605 1.454 0.610 1.122 257.921

0.7 1.265 3.462 0.856 1.842 0.844 1.504 261.251

0.8 1.580 4.288 0.888 2.388 0.827 2.050 265.580

Table 4. Bias and root mean squared error (RMSE) of predicted quantiles for data generated using the Bernoulli model (4a).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.5 0.001 0.047 0.001 0.022 −0.000 0.015 0.424

Table 5. Bias and root mean squared error (RMSE) of predicted quantiles for data generated using the Poisson ratio model (5).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.2 −0.005 0.063 −0.010 0.031 −0.008 0.024 0.643

0.3 −0.008 0.065 −0.012 0.032 −0.011 0.024 0.736

0.4 −0.007 0.069 −0.011 0.033 −0.010 0.025 0.821

0.5 −0.000 0.076 −0.006 0.033 −0.006 0.023 0.905

0.6 −0.009 0.087 −0.008 0.041 −0.005 0.031 1.015

0.7 −0.018 0.107 −0.028 0.063 −0.029 0.055 1.144

0.8 −0.017 0.134 −0.022 0.064 −0.021 0.050 1.304
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The observed coverage at the nominal 95% confidence level for the slope in selected scenarios is given in Table 7. The
results are in general accurate, although frequencies are occasionally slightly away from the nominal level. This is not sur-
prising since the sample estimator of (2.10) relies on the Huber-White estimator and on several approximations.

It would be remiss of us not to make a contrast between our proposed estimator and existing alternatives. The estimator
developed byMachado and Santos Silva19 (hereinafter referred to as MSS) is a natural candidate. However, the comparison
is inevitably restricted: first of all, neither the ‘true’ coefficients nor the population quantiles underlying mid-quantile and
jittering-based estimation are necessarily the same quantities. Indeed, the quantiles modelled by MSS are defined as

QZ|X (p) = QY |X (p)+ p−FY |X {QY |X (p)−1}
mY |X (QY |X (p))

, where Z = Y + U and U is uniformly distributed on [0, 1). The jittered quantiles

QZ|X (p) dominate the true quantiles since FY |X {QY |X (p)− 1} ≤ p, uniformly over p. In contrast, mid-quantiles interpolate
the true quantiles. In addition, the comparison must be restricted to when the response is a count or ordinal variable, as these
are required by jittering-based estimation. For these reasons, we considered only Poisson data as in scenario 3a, in which
case we expected the two estimators to target the same functional relationship (i.e., slope). The mean and variance of the
estimates using our estimator (MIDQR), as well as the ratio of means and variances comparing the MSS estimator relative
to MIDQR are given in Table 8. The two estimators gave similar estimates of the slope with MSS:MIDQR ratios of the
means close to 1 across quantiles and sample sizes. Compared to the MSS estimator, our estimator had lower variance
(MSS:MIDQR ratios of the variances >1) consistently for .2 < p < .8, but higher variance (MSS:MIDQR ratios of the var-
iances lower than 1) at p = .2 and p = .8. The boxplot of the estimates shown in Supplemental Figure 1 provides some

Table 6. Bias and RMSE of predicted quantiles for data generated using the NHANES empirical distribution model (6).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE �H

0.2 0.003 0.004 0.000 0.000 0.000 0.000 0.000

0.3 0.018 0.078 0.002 0.033 0.001 0.024 0.143

0.4 0.023 0.098 0.003 0.039 0.002 0.029 0.436

0.5 0.060 0.152 0.004 0.047 0.002 0.034 0.729

0.6 0.417 0.654 0.111 0.287 0.070 0.217 1.170

0.7 0.492 1.242 0.054 0.400 0.008 0.273 3.348

0.8 0.979 3.151 0.286 1.292 0.129 0.908 8.651

NHANES, National Health and Nutrition Examination Survey; RMSE, root mean squared error.

Figure 3. True quantile function (black line), estimated conditional mid-quantile functions for all replications (grey lines), and average

estimated conditional mid-quantile function (dashed yellow) for three simulated scenarios with continuous covariates and n = 1000.
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insight on why the performance of MIDQR was less satisfactory on the tails. For example, when n = 100 and p = 0.2, the
empirical distributions of the two estimators were nearly identical between the first and third quartiles. However, because of
a few extreme MIDQR estimates, the variance of MSS was about 12% lower. The advantage of the MSS estimator on the
tails withered away as the sample size increased. At p = 0.2, the ratio of the variances went from 0.878 (n = 100) to 0.978
(n = 1000), while at p = 0.8, it went from 0.939 (n = 100) to 1.072 (n = 1000). That is, for n = 1000, the two estimators
performed similarly on the tails. We conclude this section by remarking that this comparison is limited to a single scenario

Figure 4. True quantile function (black line), estimated conditional mid-quantile functions for all replications (grey lines), and average

estimated conditional mid-quantile function (dashed yellow) for the Bernoulli simulated scenario with continuous covariates and

n = 1000.

Table 7. Observed coverage at the nominal 95% confidence level for the slope in mid-quantiles models for data generated using the

homoscedastic discrete uniform (1a), heteroscedastic discrete uniform (2a), and Poisson (3a) models.

1a 2a 3a

p 100 500 1000 100 500 1000 100 500 1000

0.3 97.70 97.70 97.90 96.60 95.90 93.30 93.70 94.59 95.09

0.5 95.90 94.90 96.10 94.60 94.60 92.50 93.90 95.19 95.09

0.7 98.30 96.70 98.50 96.00 96.00 96.80 97.60 97.49 96.99

Table 8. Mean and variance (×1000) of the slope’s estimates using the proposed approach (MIDQR), and ratio of mean and variance of

the estimates using Machado and Santos Silva (MSS)’s19 estimator compared to MIDQR for data generated using the Poisson model (3a).

A MSS:MIDQR ratio greater than 1 indicates a larger MSS value.

n = 100 n = 500 n = 1000

MIDQR MSS:MIDQR MIDQR MSS:MIDQR MIDQR MSS:MIDQR

p Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

0.2 2.094 0.997 1.000 0.878 2.091 0.189 1.000 0.895 2.091 0.089 1.001 0.978

0.3 2.051 0.489 1.003 1.316 2.053 0.097 1.002 1.312 2.053 0.055 1.002 1.214

0.4 2.022 0.409 1.004 1.384 2.025 0.081 1.002 1.307 2.026 0.043 1.002 1.364

0.5 1.997 0.386 1.004 1.442 2.002 0.073 1.002 1.257 2.003 0.039 1.001 1.308

0.6 1.974 0.372 1.004 1.357 1.979 0.072 1.001 1.332 1.980 0.037 1.001 1.399

0.7 1.947 0.423 1.005 1.250 1.955 0.081 1.001 1.220 1.956 0.040 1.000 1.387

0.8 1.913 0.578 1.008 0.939 1.924 0.114 1.002 1.025 1.926 0.058 1.001 1.072
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and results are clearly not generalizable. However, if a lesson can be drawn, it is that the limited loss of efficiency of our
estimator at lower sample sizes and outer regions of the response distribution is more than compensated by the larger effi-
ciency gains for most of the quantiles and by the flexibility of dealing with different types of discrete responses.

3.2 Prescription drugs
In this section, we illustrate an application of mid-QR using data on prescription medications from the National Health and
Nutrition Examination Survey (NHANES).55 The US is the worldwide leader in per capita prescription drug spending,56

and its pharmaceutical market represents a major economic sector worth hundreds of billions of dollars. In a recent QR
analysis of NHANES data, Hong et al57 found a higher opioid use (morphine milligram equivalent) in adults with long-
standing physical disability and those with inflammatory conditions as compared to individuals with other conditions.
Differences were markedly larger at the 75th and 95th percentiles than those at lower percentiles. In the context of medi-
cation use, a higher percentile can be interpreted as an index of diminished health, lower quality of life, and higher financial
burden. A QR analysis of prescription medications use is therefore of both public health and health economics interest.

We abstracted data (n = 9971) on the number of prescription medicines taken from 2015 to 2016 Dietary Supplement
and Prescription Medication section of the Sample Person Questionnaire. We also obtained information on sex, age (years),
perceived health status, smoking status (smoked at least 100 cigarettes in life), alcohol use (had at least 12 alcohol drinks in
1 year), weight (kg), height (m), and race. Before carrying out the analysis, we removed the effect of NHANES oversam-
pling by first restricting the data set to all observations for White persons (about 30.7% of the overall sample), and sub-
sequently adding observations for persons of other races that we subsampled with probabilities proportional to their
NHANES weights. This resulted in a sample (n = 5058) composed of about 60.6% of White persons and 49.3%
females. We restricted the data set to adults aged 18–65 years and removed 378 incomplete observations. The final
sample size for analysis was n = 2146. Figure 5 shows the marginal distribution and mid-QF of number of prescription
medicines, while variables used for analysis are summarized in Table 9.

We investigated a linear model with sex (baseline: female), age (centred at 40 and scaled by 10), health status (baseline:
good or excellent), smoking status (baseline: no), alcohol use (baseline: no), body mass index (BMI; centred at 30 and
scaled by 5), and the interaction between sex and age. The admissible range I for the application of (2.9) was
[0.46, 0.92], thus resulting in a large value of the lower bound due to the high proportion of zeros in the response. In
Figure 6, we report the estimates of the coefficients obtained via (2.9) and their 95% confidence intervals based on
(2.10) for p ∈ {.75, .8, .85, .9}. Older males tend to use less medications as compared to their female peers, and the
inequality is more marked among high users (i.e., larger values of p), with the largest difference of 27 prescriptions

Figure 5. Number of prescription medicines using the National Health and Nutrition Examination Survey data, 2015–2016. Left:
Frequency bar plot with rug plot. Right: Estimated mid-cumulative distribution function Ĝc(y) with filled circles marking points y ∈
{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 361, 400} (top) and estimated mid-QF Ĥ(p) with filled

circles marking points p ∈ {0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995} (bottom).
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Table 9. Descriptive summary for the National Health and Nutrition Examination Survey data, 2015–2016.

Variable Minimum First quartile Median Third quartile Maximum

Prescription medicines

Overall 0.0 0.0 2.0 8.1 400.0

Female 0.0 0.2 2.5 9.5 400.0

Male 0.0 0.0 2.0 6.7 289.0

Age (years) 18.0 31.0 40.3 49.1 65.0

Body mass index (BMI) (kg/m2) 14.3 24.6 28.0 31.5 57.2

Variable Frequency Proportion (%)

Sex (female) 1061 49.4

Health status 1723 80.3

(good or excellent)

Smoking status (no) 1219 56.8

Alcohol use (no) 547 25.5

Figure 6. Estimated mid-QR coefficients (p ∈ {0.75, 0.8, 0.85, 0.9}) and point-wise 95% confidence bands for the number of

prescription medicines in the United States using the National Health and Nutrition Examination Survey data, 2015–2016.
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between two 65-year-olds of opposite sex ranking in the top 10% of their respective distributions. However, due to a nega-
tive sex-age interaction, the inequality is actually reversed at younger ages, though differences are very small. Put differ-
ently, prescription medications count increases with age (as expected) and the rate of increase is sex-specific (steeper for
females) and quantile-dependent (steeper at higher p). A fair or poor perceived health status is associated with an estimated
17 (p = .75) to 36 (p = .9) more prescriptions than what is expected with a good or excellent health status. Individuals
classified as smokers have an estimated 5 (p = 0.75) to 10 (p = 0.9) more prescriptions than non-smokers. However,
one should be cautious with the interpretation of this result since the smoking variable used here does not capture
smoking habits, past or recent. Alcohol, too, increases the prescription medications count and is quantile-dependent,
though the magnitudes of the estimated effects are smaller than those associated with other factors. Finally, higher BMI
is associated with a considerably larger number of prescription medications. For every 5 kg/m2 increase in BMI, it is esti-
mated that the 75th mid-quantile increases by about four prescriptions, while the 90th mid-quantile increases by about nine
prescriptions.

To exemplify the results, we defined three hypothetical subpopulation profiles: Alice, a woman with fair or poor health
status, non-smoker, non-alcohol-user, with a BMI equal to 50; Anna, a woman with good or excellent health status,
smoker, alcohol user, with a BMI equal to 25; and Bob, a man with same attributes as Anna’s. In Figure 7, we show
the estimated mid-quantiles as a function of age (50–65 years) for the three subpopulations. Our model estimates that
women like Alice who are in the top 25% of their subpopulation’s distribution use as much as 51 prescription medications
by the age of 50. The count raises to about 107 for those who are in the top 10%, with an additional 25 prescriptions when
reaching the age of 65. Women like Anna, who enjoy a better health status and a lower BMI, are relatively better off than
women like Alice, with substantially lower prescription drugs at all quantiles and all ages. Finally, as we noted above, esti-
mates for (older) men start from lower values and increase more slowly with increasing age as compared to women. More
specifically, a 65-year-old Bob in the top 10% of his subpopulation’s distribution has approximately the same number of
prescriptions as a 50-year-old Anna who ranks similarly in her subpopulation’s distribution, all else being equal. In
Figure 7, we also show the estimated ordinary QFs at age 50 and 65 that were recovered from the estimated conditional
mid-quantiles following the procedure discussed in Section 2.4.

Figure 7. Estimated conditional mid-quantiles (top row) and ordinary quantile functions (bottom row) of the number of prescription

medicines for three hypothetical subpopulation profiles using the National Health and Nutrition Examination Survey data, 2015–2016.
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4 Discussion
We developed an approach to conditional quantile estimation with discrete responses. We established the theoretical prop-
erties of our conditional mid-quantile estimator under general conditions and showed its good performance in a simulation
study with data generated from different discrete response models. Our two-step estimator is easy to implement. When
constraining the quantile index to a data-driven admissible range, the second-step estimating equation has a least-squares
type, closed-form solution, which is computationally efficient.

We note that the non-standard rate of convergence given in Theorem 2 may dampen the enthusiasm for the closed-form
solution of estimator (2.9). However, faster rates of alternative estimators may come at a price. The

��
n

√
-convergence of

MSS’s estimator,19 for example, is restricted to finding an n-sequence of real numbers that depends on the model’s trans-
formation to linearity (see their assumption A6). This means that implementation of jittering requires ad hoc asymptotic
calculations and software programming, neither of which are typically the source of excitement for the applied users. In
general, while our proposed estimator does not achieve the much-coveted convergence rate of classical estimators, we
can take solace in the fact that its bias and loss of efficiency can be ignored already at moderate sample sizes. As compared
to jittering-based QR, mid-QR allows for the modelling of a wider range of discrete outcomes and it shows efficiency gains
already at small sample sizes. Last but not least, the availability of mid-QR in the R package Qtools,58 of which a brief
tutorial is given in the Supplemental Material, may be particularly attractive in applied research studies.

In a real data analysis, conditional mid-quantiles revealed interesting aspects of prescription drug use in the US. In
general, our results on gender and age inequalities are consistent with the literature.59,60 While differences in medication
use between men and women are expected due to differences in the incidence of disease (e.g., genitourinary infections,
migraines, impaired thyroid function) or biological differences or differential preventive health care use, gender inequal-
ities may be due also to unequal treatment.60 Our analysis provides additional insight as it shows that differences between
men and women (especially among older individuals) are heterogeneous, with a substantially higher gender gap among the
top 10% of the distribution, after adjusting for perceived health status and other covariates. This raises the alarm about a
possible differential medical treatment that worsens the inequality among the most fragile segment of the population. On
the other hand, the heterogeneous association between the number of prescription medicines and BMI may be easier to
explain on medical grounds. Higher prescribing levels are expected to be associated with higher BMI because of
medical conditions that are known to be more prevalent in obese individuals.61 If a higher percentile of the medications
count distribution is interpreted as an (objective) index of poor health, then it is natural to expect that a given increase
in BMI is more detrimental for someone ranking at, say, the 90th percentile than it is for the ‘average’ prescription
drugs user. Owing to the fact that obesity increases drug prescribing in the most expensive prescribing categories,61 it
becomes clear that intervening on this modifiable risk factor has important connotations also for controlling health care
expenditure.

We believe that mid-QR is amenable to several possible extensions, including estimation in the presence of censoring
(survival analysis) and clustering (e.g., longitudinal analysis). Further research is needed to develop computationally effi-
cient methods for high-dimensional data. Useful hints on how to tackle issues regarding censoring and higher-dimensional
covariates may be gathered from the work by De Backer et al.52
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