
Supplementary material for ‘Mid-quantile
regression for discrete responses’

Marco Geraci*

Sapienza University of Rome, Italy
University of South Carolina, USA

and
Alessio Farcomeni

University of Rome “Tor Vergata”, Italy

Abstract

This report contains supporting materials for the paper entitled ‘Mid-quantile
regression for discrete responses’, hereinafter referred to as the ‘Manuscript’. Sec-
tion A contains technical details on inference. Section B reports additional tables
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mid-quantile regression routines available in the R package Qtools.
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A Supplementary theoretical results

In this section, we prove Theorems 1 and 2 in the Manuscript. We begin by providing some

auxiliary results. We assume, throughout, that Ĝc
Y |X(·|x) is a linear interpolant. While

the validity of the Theorems still holds for other types of interpolants (e.g., polynomial),

analytical expressions are more tractable in the linear case.

A.1 Auxiliary results

Our objective function and estimator are given by

ψn(β; p) =
1

n

n∑
i=1

{
p− Ĝc

Y |X (ηi|xi)
}2

(A.1)

and

β̂(p) = arg min
β∈Rq

ψn(β; p), (A.2)

respectively. The equation of the interpolating function can be written explicitly as

Ĝc
Y |X (ηi|xi) = bji(ηi − zji) + π̂ji zji ≤ ηi ≤ zji+1,

where bji =
π̂ji+1 − π̂ji
zji+1 − zji

and π̂ji = ĜY |xi(zji). The index ji = 1, . . . , k − 1 identifies, for a

given i = 1, . . . , n, the value zji among the z’s such that ĜY |xi(zji) ≤ p ≤ ĜY |xi(zji+1).

Then, the derivative of ψn with respect to the hth element of β is given by

∂ψn(β; p)

∂βh
=

1

n

n∑
i=1

2
{
p− Ĝc

Y |X
(
h−1(x>i β)|xi

)}{
−
∂Ĝc

Y |X
(
h−1(x>i β)|xi

)
∂βh

}
,

where
∂Ĝc

Y |X
(
h−1(x>i β)|xi

)
∂βh

= xihbji
∂h−1(ηi)

∂ηi
,

the existence of which follows from the differentiability of h.

Now, consider the second derivative of the objective function

∂2ψn(β; p)

∂βh∂βu
=− 2

n

n∑
i=1

[
p− Ĝc

Y |X
{
h−1(x>i β)|xi

}] ∂2Ĝc
Y |X

{
h−1(x>i β)|xi

}
∂βh∂βu

−
∂Ĝc

Y |X
{
h−1(x>i β)|xi

}
∂βh

∂Ĝc
Y |X

{
h−1(x>i β)|xi

}
∂βu

,
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where
∂2Ĝc

Y |X
(
h−1(x>i β)|xi

)
∂βh∂βu

= xihxiubji
∂2h−1(ηi)

∂ηi
.

In summary, we obtain

∂2ψn(β; p)

∂βh∂βu
= − 2

n

n∑
i=1

xihxiubji

[
p− Ĝc

Y |X
{
h−1(x>i β)|xi

}] ∂2h−1(ηi)
∂ηi

−xihxiu
{
bji
∂h−1(ηi)

∂ηi

}2

.

Clearly, if h is the identity function, then

∂2ψn(β; p)

∂βh∂βu
=

2

n

n∑
i=1

xihxiub
2
ji
.

A.2 Proof of Theorem 1

Proof. Under the conditions stated (Li and Racine, 2008)

max
z

∣∣∣ĜY |X(z)−GY |X(z)
∣∣∣→ 0

as n→∞. We can also verify that

sup
z

∣∣∣Ĝc
Y |X(z|x)−Gc

Y |X(z|x)
∣∣∣→ 0.

Consequently,

Pr
(

lim
n
Ĝc
Y |X

[
h−1

{
x>β(p)

}
|x
]

= Gc
Y |X

[
h−1

{
x>β(p)

}
|x
])

= 1.

Consider now γ(p) 6= β∗(p). It is straightforward to verify that

(
p−Gc

Y |X
[
h−1

{
x>β∗(p)

}
|x
])2 ≤ (p−Gc

Y |X
[
h−1{x>γ(p)}|x

])2
.

In fact, if h−1
{
x>β∗(p)

}
= yj for some value of p and yj ∈ SY , then (p−Gc

Y |X [h−1{x>β∗(p)}|x])2 =

0; while all other values are obtained through interpolation. A consequence is that β∗(p)

is, eventually, a solution of the minimization problem in (A.2). Additionally, there is only

one such solution, since, by assumption, Pr(Y = y|X) > 0 for all y ∈ SY , and Gc(η(p)|x)

is monotonic for π1 < p < πk, where π1 and πk are the mid-probabilities corresponding

to, respectively, the smallest and largest discrete value (if k = ∞, then π1 < p < 1).

This implies consistency of β̂(p), the minimizer in (A.2). Consistency of the predicted

mid-quantiles follows directly.
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A.3 Proof of Theorem 2

Proof. Since the differentiability of ψn(β; p) follows from the assumptions, we can apply a

first-order Taylor expansion to obtain

∇βψn(β̂; p) = ∇βψn(β∗; p) +∇2
βψn(β+; p)(β̂ − β∗), (A.3)

where β+ is a point in the interior of the hypercube delimited by β̂ and β∗. Expressions

for ∇βψn and ∇2
βψn are given in Section A.1. Note that ∇βψn(β̂; p) = 0 since β̂ is the

minimizer in (A.2). The assumption on the design matrix guarantees that the Hessian

∇2
βψn(β+; p) is positive definite. Hence, we can rewrite (A.3) as√

n
∏
j

λj(β̂ − β∗) = −(∇2
βψn(β+; p))−1

√
n
∏
j

λj∇βψn(β∗; p). (A.4)

To derive the asymptotic distribution of β̂, it suffices to study the asymptotic distribu-

tion of the right-hand side of (A.4). First, let J(b) = E

{
∇2
βψn(β; p)

∣∣∣
β=b

}
. By using the

consistency results in Theorem 1 and the triangle inequality, it is immediate to show that

∇2
βψn(β+; p) weakly converges element-wise to J(β∗). Using the results in Section A.1, we

then can write√
n
∏
j

λj∇βψn(β∗; p) =− 2

√
1

n

∏
j

λj

n∑
i=1

∇βĜ
c
Y |X

{
h−1(x>i β

∗)|x
}

×
[
p− Ĝc

Y |X
{
h−1(x>i β

∗)|x
}]
.

We need to demonstrate that the expression above converges in distribution, thus we expand

the quantities on the right-hand side as follows:√
n
∏
j

λj∇βψn(β∗; p) =− 2

n

n∑
i=1

xiḣ
−1(ηi)

p

zji+1 − zji

√
n
∏
j

λjĜY |xi(zji+1)

+
2

n

n∑
i=1

xiḣ
−1(ηi)

p

zji+1 − zji

√
n
∏
j

λjĜY |xi(zji)

+
2

n

n∑
i=1

xiḣ
−1(ηi)

Ĝc
Y |X

{
h−1(x>i β

∗)|xi
}

zji+1 − zji

√
n
∏
j

λjĜY |xi(zji+1)

− 2

n

n∑
i=1

xiḣ
−1(ηi)

Ĝc
Y |X

{
h−1(x>i β

∗)|xi
}

zji+1 − zji

√
n
∏
j

λjĜY |xi(zji),

(A.5)
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where ḣ−1(ηi) = ∂h−1(ηi)
∂ηi

. First of all, as shown in Li and Racine (2008),
√
n
∏

j λjĜY |xi(zji)

converges in distribution to a Gaussian random variable for all i. Additionally, the assump-

tions on the bandwidths guarantee asymptotic independence of ĜY |xh(z) and ĜY |xl(z) for

xl 6= xh and all z. To see this, note that Kλ(Xi, x) → 0 for all Xi 6= x. Accord-

ing to the dominated convergence theorem, the asymptotic covariance of ĜY |xh(z) and

ĜY |xl(z) is zero. Asymptotic independence follows by the Cramer-Wold device. Fur-

thermore, Pr(zji+1 − zji 6= 0) = 1 since Y is discrete. Finally, note that by our Theo-

rem 1, Ĝc
Y |X

{
h−1(x>i β

∗)|xi
}

converges in probability to a constant value. By combining

the results above with the assumptions on the design matrix (namely, that 1/n
∑

i xi con-

verges to a bounded vector), we obtain convergence in distribution of the right-hand side

of (A.5) to a Gaussian random variable.

Therefore,
√
n
∏

j λj∇βψn(β∗; p) is asymptotically normal with variance

D(β∗) = Var

2
√∏

j λj
√
n

n∑
i=1

∇βĜ
c
Y |X

{
h−1(x>i β

∗)|xi
} [
p− Ĝc

Y |X
{
h−1

(
x>i β

∗) |xi}]
 .

(A.6)

By letting

V (β∗) = J(β∗)−1D(β∗)J(β∗)−1, (A.7)

we obtain

V (β∗)−1/2
√
n(β̂ − β∗) d→ N(0, Iq).

A consistent estimator of V (β∗) could be found by calculating sample averages of the

quantities involved in J(β∗), and computing D(β∗) via resampling. However, using expres-

sion (2.10) in the Manuscript leads to an analytical calculation of the variance of β̂ with

clear computational advantages.
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B Supplementary simulation results

Table 1: Bias and root mean squared error (RMSE) of predicted quantiles for data gener-

ated using the homoscedastic discrete uniform model (1b).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE H̄

0.2 −0.046 0.803 −0.037 0.528 −0.036 0.453 8.995

0.3 0.071 0.827 0.016 0.535 0.000 0.456 9.995

0.4 0.122 0.849 0.034 0.537 0.014 0.455 10.995

0.5 0.156 0.854 0.046 0.532 0.022 0.451 11.995

0.6 0.197 0.851 0.055 0.521 0.031 0.439 12.995

0.7 0.245 0.837 0.067 0.507 0.041 0.425 13.995

0.8 0.346 0.839 0.111 0.491 0.069 0.412 14.995

Table 2: Bias and root mean squared error (RMSE) of predicted quantiles for data gener-

ated using the heteroscedastic discrete uniform model (2b).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE H̄

0.2 −0.463 1.838 −0.324 1.227 −0.344 1.114 13.988

0.3 −0.545 2.167 −0.394 1.462 −0.390 1.343 16.986

0.4 −0.562 2.431 −0.457 1.719 −0.431 1.591 19.983

0.5 −0.501 2.662 −0.507 1.972 −0.463 1.848 22.981

0.6 −0.228 2.857 −0.474 2.211 −0.461 2.104 25.978

0.7 0.175 3.060 −0.275 2.455 −0.300 2.353 28.976

0.8 0.843 3.376 0.196 2.749 0.108 2.659 31.973
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Table 3: Bias and root mean squared error (RMSE) of predicted quantiles for data gener-

ated using the Poisson model (3b).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE H̄

0.2 −18.167 36.048 −13.598 27.366 −12.075 24.612 216.351

0.3 −9.786 23.088 −8.372 19.552 −7.651 17.930 220.421

0.4 −3.072 14.097 −4.141 13.343 −3.996 12.624 223.926

0.5 3.416 11.066 0.076 7.978 −0.371 7.560 227.223

0.6 9.946 14.939 4.761 7.626 3.551 6.309 230.542

0.7 16.268 21.987 9.473 12.590 7.860 10.549 234.117

0.8 26.405 35.420 15.210 20.174 12.691 16.860 238.331

Table 4: Bias and root mean squared error (RMSE) of predicted quantiles for data gener-

ated using the Bernoulli model (4b).

n = 100 n = 500 n = 1000

p Bias RMSE Bias RMSE Bias RMSE H̄

0.5 −0.000 0.067 0.000 0.029 0.000 0.021 0.577
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Figure 1: Boxplots of the estimates of the slope parameter from Machado and Santos Silva’s (2005) estimator (MSS) and mid-

quantile regression (MIDQR) for p ∈ {0.2, 0.4, 0.6, 0.8} and n ∈ {100, 500, 1000} when data are generated using the Poisson

model (3a).
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C R code

In this section, we provide an example on how to do inference on mid-quantile regression

models using the R package Qtools (Geraci, 2016). The latter is available on CRAN and

can be installed as follows:

install.packages("Qtools")

We consider the dataset esterase, which is available in the Qtools package. The dataset

contains data from an essay for the concentration of an enzyme esterase. The observed

concentration of esterase was recorded (esterase), and then in a binding experiment the

number of bindings were counted (Count). After loading the package, the following code

shows how to attach the dataset and access the R documentation describing the variables:

library(Qtools)

data(esterase)

?esterase

> head(esterase)

Esterase Count

1 3.1 28

2 5.6 166

3 6.1 52

4 6.4 84

5 6.5 85

6 6.7 86

We estimate the marginal mid-quantiles of the discrete variable Count using the function

midquantile.

fit <- midquantile(esterase$Count, probs = 1:3/4)

> str(fit)

List of 5
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$ call: language midquantile(x = esterase$Count, probs = 1:3/4)

$ x : num [1:3] 0.25 0.5 0.75

$ y : num [1:3] 147 269 419

$ fn :function (v)

$ data: int [1:113] 28 166 52 84 85 86 127 104 107 96 ...

- attr(*, "class")= chr "midquantile"

The output is a list that contains the estimated mid-quantiles (y) at the specified probabil-

ities (x). It also contains the interpolating mid-quantile function (fn) which can be plotted

using the associated plot.midquantile function. Confidence intervals for mid-quantile

estimates can be obtained using confint.midquantile.

Suppose we want to fit the linear model H(p) = β0 + β1(p)x to estimate the 0.25 and 0.75

conditional mid-quantiles of Count as a function of esterase. We use the main command

midrq where the argument tau specifies the level of the quantiles of interest.

fit <- midrq(Count ~ Esterase, tau = c(0.25, 0.75), data = esterase,

type = 3, control = midrqControl(method = "Nelder-Mead", ecdf_est = "npc"))

> fit

call:

midrq(formula = Count ~ Esterase, data = esterase, tau = c(0.25,

0.75), type = 3, control = midrqControl(method = "Nelder-Mead",

ecdf_est = "npc"))

Coefficients linear predictor:

0.25 0.75

(Intercept) -48.97063 16.02915

Esterase 15.61743 19.12168

Degrees of freedom: 113 total; 111 residual

There are three estimators available in midrq and these can be selected via the argument
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type. Using type = 1, the minimization of the objective function (2.7) in the Manuscript

is carried out using a general purpose optimizer (by default, this is Nelder-Mead, although

it can be changed via midrqControl). When type = 2, optimization is based on a CUSUM

process (which is not discussed in the present work and should be considered experimen-

tal). Finally, type = 3 gives the least-squares-type estimator in equation (2.9) of the

Manuscript. On the other hand, the argument ecdf est in midrqControl controls the

conditional mid-CDF estimator (for example, ecdf est = "npc" gives the kernel estima-

tor by Hayfield and Racine (2008)).

The package provides several S3 methods for fitted midrq objects including: summary, which

gives standard errors, p-values, and confidence intervals; coef to extract estimates of the

regression coefficients; vcov to extract the variance-covariance matrix of the estimator β̂(p)

defined in Section 2.3 of the Manuscript; and predict and residuals, whose names are

self-explanatory. The function midq2q gives an estimate of ordinary quantiles using the

procedure described in Section 2.4 of the Manuscript. Finally, we draw attention on the

availability in the Qtools package of the functions midecdf and cmidecdf for estimating

marginal and conditional mid-cumulative probabilities, respectively.
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