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Abstract

We introduce classifiers based on directional quantiles. We derive theoretical results for
selecting optimal quantile levels given a direction, and, conversely, an optimal direction given
a quantile level. We also show that the probability of correct classification of the proposed
classifier converges to one if population distributions differ by at most a location shift and if
the number of directions is allowed to diverge at the same rate of the problem’s dimension.
We illustrate the satisfactory performance of our proposed classifiers in both small and high
dimensional settings via a simulation study and a real data example. The code implementing
the proposed methods is publicly available in the R package Qtools.
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1 Introduction

The idea of using quantiles in classification is relatively recent and largely unexplored. The

median classifier for high-dimensional problems proposed by Hall et al. (2009), which calculates

the L1 distance of the coordinates of a multivariate data point from componentwise medians

(rather than centroids), is particularly advantageous when data exhibit heavy-tailed or skewed

distributions. Building on Hall et al.’s (2009) idea, Hennig and Viroli (2016a) proposed quantile

classifiers which hinge on the sum of distances from componentwise quantiles at some generic

level θ ∈ (0, 1). The ensemble quantile classifier by Lai and McLeod (2020) assigns weights to

the componentwise distances by minimising a regularised loss function, where the regularisation

parameter is determined by cross-validation.

In all the studies mentioned above, quantiles are calculated marginally for each input variable

(componentwise). This implies that their calculation ignores the possible interdependence among

variables. In this study, we consider directional quantiles for multivariate distributions (Kong and

Mizera, 2012) to address such a limitation. Our choice is motivated by several reasons. First, as

already mentioned, the dependence among variables is taken into account by computing linear

combinations of input variables. Second, directional quantiles have a simple interpretation since

the projections’ weights embody the relative importance of the variables involved in the classifi-

cation problem. Finally, in the special case of p canonical directions (with p equal to the number

of variables), the use of directional quantiles leads to the componentwise quantile classifier (Hen-

nig and Viroli, 2016a), and thus inherits asymptotic optimal properties as shown in Appendix.

The search of a directional quantile, it being based on a linear combination of variables, could be

seen as a projection pursuit problem (Lee et al., 2005). However, directional quantiles require the

search of the best projection associated with one, or more, optimal percentiles, thus making the

problem particularly challenging. Directional quantiles have already found application in risk

classification problems (Geraci et al., 2020) and proved to be a worthwhile alternative to risk

classification based on componentwise quantile thresholds.

In general, the application of our methods does not require any assumption on the shape of the

population distributions. We derive asymptotic theoretical properties of the proposed classifier,

under the assumption that distributions for alternative populations differ by at most a location-
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shift. While this assumption may be unrealistic in practice, empirical results support the merit of

the proposed classifier also when the distributions differ by shape and not just by location.

The rest of the paper is organised as follows. In the next section, we introduce notation and

basic definitions, followed by our proposal of directional quantile classifiers. Theoretical results

are stated in Section 3. We report the results of a simulation study in Section 4 and of a real

data analysis in Section 5. Concluding remarks are given in Section 6. All proofs of theoretical

results are reported in Appendix A. A software implementation of our approach can be found in

the package Qtools (Geraci, 2016), freely available on the Comprehensive R Archive Network

(R Core Team, 2020).

2 Methods

2.1 Notation and definitions

Let X(1) =
(
X

(1)
1 , X

(1)
2 , . . . , X

(1)
p

)>
and X(2) =

(
X

(2)
1 , X

(2)
2 , . . . , X

(2)
p

)>
denote two p-variate

random variables with absolutely continuous distributions F (1) and F (2) defined on the same

space X ⊆ Rp for two populations Π(1) and Π(2), respectively. The marginal distributions of the

components of X(k) are denoted by F (k)
j , for j = 1, 2, . . . and k = 1, 2. Further, I(·) denotes the

indicator function which is equal to 1 if its argument is true, and 0 otherwise.

Our goal is to assign a new observation y = (y1, y2, . . . , yp)
> to either Π(1) or Π(2) accord-

ing to how close the point is to one or the other. In quantile-based classification (Hennig and

Viroli, 2016a), the distance is first calculated for each component of y using the asymmetrically

weighted loss function

Φ(k)(θ; yj) = {θ + (1− 2θ)I(yj −Q(k)
Xj

(θ) < 0)}|yj −Q(k)
Xj

(θ)| (1)

for j = 1, 2, . . . , p and k = 1, 2, where Q(k)
Xj

(θ) is the componentwise quantile at level θ ∈ (0, 1)

for the kth population, which can be obtained by inversion of F (k)
j . Subsequently, y is assigned

to Π(1) if the discrepancy

d(y, θ) =

p∑
j=1

{Φ(2)(θ; yj)− Φ(1)(θ; yj)} (2)
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is positive, and to Π(2) otherwise. The quantile classifier reduces to the componentwise median

classifier of Hall et al. (2009) for θ = 0.5. An extension of (2) to more than two populations is

straightforward.

The classification rule based on (2) does not acknowledge the possible interdependence among

the variables, since quantiles are obtained marginally for each variable. We address this limitation

by using directional quantiles for multivariate data (Kong and Mizera, 2012). We now explain

our idea informally and, in the next section, give a rigorous treatment.

Define u to be a vector with unit norm in Rp. Throughout this paper, our focus will be on

the projected random variables u>X(k) ≡ Z(k), k = 1, 2, defined on Z ⊆ R. By assumption,

the Z(k)’s are continuous. We denote the corresponding distribution and density functions with

G(k)(·; u) and g(k)(·; u), respectively.

Our goal is to develop a classifier where the quantities in (1) are opportunely redefined on the

corresponding projections along u to capture the multivariate nature of the distributions, namely

Φ(k)(θ; u>y) = {θ + (1− 2θ)I(u>y −Q(k)
X (θ; u) < 0)}|u>y −Q(k)

X (θ; u)| (3)

for k = 1,2, where Q(k)
X (θ; u) ≡ Q

(k)

u>X
(θ) is the θth quantile of Z(k). The latter is obtained by

inverting G(k) and it can be recognised as the θth directional quantile of X(k) in the direction u

(Kong and Mizera, 2012).

By working with projections, we basically summarise a multivariate problem as a univariate

one. Clearly, one difficulty to address is how many and which directions should be considered.

To this end, we should note that not all the directions are equally useful for classification. To

exemplify, consider Figure 1, which depicts bivariate normal samples from two independent

populations centered at (1,1) and (3,3), respectively, and same variance. We want to assign the

new observation y = (1.3, 3.4)> to one of the two populations. The log-density at y of two

bivariate normal distributions with sample means and covariance matrices separately estimated

from the two samples, is −8.8 and −5.7, respectively. This suggests that y has been generated

more likely from F2 than from F1.

Now compute Φ(k)(0.9; u>y), k = 1, 2, as in (3) for four normalised directions. The results

are reported in Table 1. Based on a principle of minimum distance, we assign y to F2, thus

consistently with a maximum likelihood principle, for three, though not all four, directions.
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Figure 1: Simulated data depicting bivariate normal samples from two independent distributions

(black and grey dots). The filled squares (labelled ‘y’) mark the point with coordinates (1.3, 3.4),

while dashed lines mark directions.

u> Φ(1) Φ(2)

(−0.58,−0.81) 0.27 0.01

(0.25, 0.97) 1.58 0.07

(−0.20,−0.98) 0.30 0.08

(1.00, 0.02) 0.03 0.23

Table 1: Distance Φ(k)(0.9; u>y), k = 1, 2, calculated for simulated data using four different

directions u.
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2.2 Directional quantile classifier

Let ϑ = {θ1, θ2, . . . , θR} be a set of R distinct quantile levels on (0, 1). Also, define the set

υr = {ur1,ur2, . . . ,urSr} containing Sr normalised directions associated with θr, r = 1, . . . , R,

and let υ = {υ1, υ2, . . . , υR}. (Note that for convenience one may set Sr = S for r = 1, . . . , R.)

As mentioned in the previous section, we need to be wary of particular directions that may

lead us to a classification error. Therefore, we introduce weights ωrs associated with each direc-

tion urs to decrease (or increase) their relative importance. Let ω = (ω11, . . . , ω1S1 , . . . , ωRSR)>

denote the vector of all such weights. We propose the discrepancy

d(y, ϑ, υ,ω) =
R∑
r=1

Sr∑
s=1

ωrs{Φ(2)(θr; u
>
rsy)− Φ(1)(θr; u

>
rsy)}, (4)

where Φ(k) is defined in (3). Then our directional quantile classifier (DQC) assigns the observa-

tion y to Π(1) if d(y, ϑ, υ,ω) > 0, or to Π(2) otherwise. Note that if R = 1, Sr = p, ωrs = 1, and

υ = {e1, e2, . . . , ep} the standard basis in Rp, then (4) reduces to (2).

A difficulty associated with the calculation of (4) is the selection of quantile levels, directions,

and weights in the training data, say x, that give the best performance on the test data, say y. For

some prior probabilities π1 and π2, let

ψ(x, ϑ, υ,ω) =π1

∫
X
I{d(x, ϑ, υ,ω) > 0} dF (1)(x)

+ π2

∫
X
I{d(x, ϑ, υ,ω) ≤ 0} dF (2)(x) (5)

denote the population probability of correct classification by the DQC. Note that maximising

(5) is equivalent to minimising the theoretical misclassification rate. For any given level θ and

direction u, the optimal misclassification rate is obtained when

π1

∫
X

Φ(1)(θ; u>x) dF (1)(x) < π1

∫
X

Φ(2)(θ; u>x) dF (1)(x)

and

π2

∫
X

Φ(2)(θ; u>x) dF (2)(x) < π2

∫
X

Φ(1)(θ; u>x) dF (2)(x),

which is equivalent to minimise

π1

∫
X

{
Φ(1)(θ; u>x)− Φ(2)(θ; u>x)

}
dF (1)(x)

+ π2

∫
X

{
Φ(2)(θ; u>x)− Φ(1)(θ; u>x)

}
dF (2)(x). (6)
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In the general problem with K populations, the minimum misclassification rate is obtained

when

K∑
k=1

πk

∫
X

Φ(k)(θ; u>x) dF (k)(x) <
K∑
k=1

πk

∫
X

min
k′ 6=k

Φ(k′)(θ; u>x) dF (k)(x). (7)

Let ∆(k)(x, θ,u) = Φ(k)(θ; u>x)−mink′ 6=k Φ(k′)(θ; u>x). Given a sample of n observations xi

and corresponding class labels `i ∈ {1, 2, . . . , K}, we aim to solve

min
ϑ,υ,ω

K∑
k=1

∑
i:`i=k

R∑
r=1

Sr∑
s=1

ωrs∆
(k)(xi, θr,urs). (8)

Problem (8) may seem daunting, but luckily we can solve forω rather easily. Given ϑ and υ, prob-

lem (8) is linear with unit-norm constraints and can be minimised by using the Lagrange multi-

plier method. This problem has a closed-form solution given by ω̂ = (ω̂11, . . . , ω̂1S1 , . . . , ω̂RSR)>

with generic rsth element

ω̂rs =
∆̃rs√∑R

r=1

∑Sr
s=1 ∆̃2

rs

, (9)

where ∆̃rs =
∑K

k=1

∑
i:`i=k

∆(k)(xi, θr,urs).

We now turn to how to choose directions and quantile levels. A crude solution would consist

in doing a multidimensional grid search on p+1 dimensions. However, such a solution would be-

come computationally prohibitive even at modest values of p. Thankfully, we are able to mitigate

the computational cost of a naı̈ve numerical solution with some theoretical results (Section 3);

in particular, with Theorem 1, which guarantees that for each projection there exists (at least)

a quantile that leads to the optimal Bayes misclassification probability, and Theorem 2, which,

conversely, identifies the best direction for a given quantile level. Unfortunately, a theoretical

result for the simultaneous optimisation with respect to θ and u does not exist. Nevertheless, we

show that our DQC is asymptotically optimal (i.e. the misclassification rate goes to zero) when

the number of directions increases with p and n (Theorem 3) under certain assumptions.

It shall be clear that, in principle, there are several alternative ways of implementing our

proposed classification procedure. After investigating some alternatives (results not shown), we

found that a strategy that gives satisfactory results in different data settings is the one that we

pseudocoded in Algorithm 1. First, we define a grid of θ values with length R spanning the

7



unit interval and, for each of these values, we randomly draw a set of Sr normalised directions

from the orthant space defined by the optimal direction of Theorem 2 (that is, the p-dimensional

Euclidean space of the vectors having the same component signs of the optimal direction).

We conclude this section by summarizing the key points concerning the implementation of

our proposed classifier:

(a) since the DQC requires choosing R distinct quantile levels and Sr distinct normalised direc-

tions, r = 1, . . . , R, the computational burden may easily become excessive, especially when

n is large;

(b) for low or moderate sample sizes, we propose using Algorithm 1, with a fixed grid of R� 1

quantile levels (in our simulation study, we set R = 50) and a uniform random sample of

Sr > 20 directions (in our simulation study, we set Sr = 100). The theoretical basis for this

strategy is supported by Theorem 3, at least when the distributions of competing populations

differ by at most a location-shift, as it ensures consistency of the DQC when R and Sr grow

large. On the other hand, Theorem 2 partially supports Algorithm 1 because we sample from

the same orthant of the optimal direction.

(c) to reduce the computational burden when the sample size is large, one may set R = 1,

Sr � 20, for r = 1, . . . , R, and find the optimal θ according to Theorem 1 or set R � 1,

Sr = 1, for r = 1, . . . , R, and find the optimal u according to Theorem 2;

(d) since a theoretical result for the optimal choice of θ and u does not exist, we do not recom-

mend setting R = 1 and Sr = 1.

3 Theoretical results

In this section, we present theoretical results concerning our DQC. The proofs of lemmas and

theorems are reported in the Appendix.
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Algorithm 1 Pseudocode of the algorithm for directional quantile classification of y

Fix θ1, . . . , θR spanning the unit interval.

for r = 1, . . . , R do

Compute ûr, the optimal direction according to (12) in Theorem 2.

for s = 1, . . . , Sr do

for j = 1, . . . , p do

if ûrj ≥ 0 then

Sample ursj ∼ U [0, 1]

else

Sample ursj ∼ U [−1, 0]

end if

end for

end for

Normalize ursj ← ursj/
√∑p

h=1 u
2
rsh

end for

Compute optimal weights ωrs for s = 1, . . . , Sr, r = 1, . . . , R, as in (9).

Compute discrepancy d(y, ϑ, υ,ω) as in (4)

if d(y, ϑ, υ,ω) > 0 then

Assign y to Π(1)

else

Assign y to Π(2)

end if

3.1 Optimal quantile level θ

Although we suggest to consider a grid of quantiles as in Algorithm 1, there could be situations in

which using a single quantile is preferable (e.g., because one wishes to identify such a quantile or

for computational reasons). In this section we show that under general assumptions there exists

an optimal quantile. We derive the theoretical rate of correct classification as a function of θ, for

given u. We assume K = 2 populations, although results can be generalised to K > 2.
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Lemma 1 For given u, let Qα(θ; u) = min{Q(1)
X (θ; u), Q

(2)
X (θ; u)} with corresponding inverse

Gα(·; u), density gα(·; u), and prior probability of correct classification πα, and let Qβ(θ; u) =

max{Q(1)
X (θ; u), Q

(2)
X (θ; u)} with corresponding inverse Gβ(·; u), density gβ(·; u), and prior

probability of correct classification πβ . The probability of correct classification of the directional

quantile classifier is

ψ(θ) = παGα(Q̃(θ; u); u) + πβ{1−Gβ(Q̃(θ; u); u)} (10)

where Q̃(θ; u) = θQα(θ; u) + (1 − θ)Qβ(θ; u). Analogously, the theoretical misclassification

rate is

1− ψ(θ) = πα{1−Gα(Q̃(θ; u); u)}+ πβGβ(Q̃(θ; u); u). (11)

Theorem 1 Assume that the density functions gα(z; u) and gβ(z; u) exist for z and are nonzero

on the same compact domain Z . Further assume that there is a point z0 with παgα(z0; u) =

πβgβ(z0; u) so that παgα(z; u) > πβgβ(z; u) for z on one side of z0 and παgα(z; u) < πβgβ(z; u)

for z on the other side of z0. Then the quantile classifier using the quantile Q̃(θ; u) that min-

imises the theoretical misclassification probability achieves the optimal Bayes misclassification

probability in the projected space defined by u.

The consistency of the classifier may be illustrated with an example. Consider a two class

decision problem where one population is a location-shift version of the other. Figure 2 shows

two distributions which have both the same right skewness. The quantiles Qα(θ) and Qβ(θ) are

marked by dashed lines. The median classifier (Hall et al., 2009) in the upper panel leads to a non-

optimal misclassification probability equal to 0.30. However, the misclassification probability is

reduced to 0.28 by setting θ = 0.202.

3.2 Optimal direction u

In the following theorem we show how to derive the optimal direction that minimises the mis-

classification rate at a given θ.

Theorem 2 Let W = (W1,W2, . . . ,Wp)
> be a p-variate random variable such that QWj

(θ) =

0, for j = 1, . . . , p, and let µ(k) = (µ
(k)
1 , µ

(k)
2 , . . . , µ

(k)
p )> be a vector of constants, k = 1, 2. We
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Figure 2: Misclassification probability (shaded grey area) with two location-shifted skewed dis-

tributions according to median classifier (upper panel) and the optimal quantile classifier (lower

panel).

assume that X(k) = W+µ(k) and its probability distribution function is F (k), for k = 1, 2. More-

over, assume that Q(2)
X (θ; u) > Q

(1)
X (θ; u), where Q(k)

X (θ; u) is the θ-quantile of Z(k) ≡ u>X(k).

(Notice that there is no loss of generality with this assumption since the case Q
(2)
X (θ; u) ≤

Q
(1)
X (θ; u) can be reformulated as Q(2)

X (θ;−u) > Q
(1)
X (θ;−u).) Under these assumptions, the

normalised direction u that minimises the misclassification error (6) is

û =
Q

(2)
X (θ)−Q(1)

X (θ)

‖Q(2)
X (θ)−Q(1)

X (θ)‖
, (12)

where Q(k)
X (θ) ≡ µ(k).

The generalization of Theorem 2 to K > 2 populations involves K(K − 1)/2 optimal direc-

tions for each of all the possible pairwise comparisons.
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3.3 Asymptotic misclassification rate

In this section, we show that under certain assumptions, the correct classification probability

converges to unity when the number of dimensions grows to infinity along with the sample size

and the number of projections. The proof is built following a strategy similar to that used in Hall

et al. (2009, Theorem 2), although our premises start from milder assumptions. In particular the

projections are not required to obey the “ψ−mixing condition” (Bradley, 2005), which is rather

strict in practice. Our theorem is developed for any θr ∈ (0, 1), unit weights ωrs = 1, and R = 1.

Thus, the asymptotic result holds for sub-components of the summation in (8), which are then

weighted and summed to minimise the misclassification rate. Hence, the overall criterion inherits

the optimal properties of its additive components.

As we did with the theorems in the previous sections, we present this theorem for K = 2

classes. Its extension to K > 2 classes requires contrasting each class against the remaining

K − 1 classes, consistently with (7).

Theorem 3 Consider a given quantile θ and a set of directions υ = {u1, . . . ,uS} sampled from

a unit p-sphere and let n = max(n1, n2), with n1 and n2 denoting the sample sizes of the two

groups in the training set. Assume

(i) For a constant A1 > 0, S ≥ A1n.

(ii) The p variables X(k)
1 , X

(k)
2 , . . . , X

(k)
p have each the same distribution as W1 + µ

(k)
1 ,W2 +

µ
(k)
2 , . . . ,Wp + µ

(k)
p , respectively. Moreover, QWj

(θ) = 0 ∀j and sup
j≥1

Var(Wj) = A2 <

+∞.

(iii) The first moments of the projections are uniformly bounded in a strong sense. This implies

that ∀c > 0 and ∀u, ∃v with |u>v| > c such that

inf
s≥1

inf
|u>
s v|>c

θE |u>s W + u>s v| − (1− θ) E |u>s W| > 0.

(iv) For some ε > 0, the proportion of values s ∈ {1, 2, . . . , S} for which

|θu>s µ(2) − (1− θ)u>s µ(1)| > ε

multiplied by n1/2, say n1/2]Kε, is of larger order than S, which means S
(
n1/2]Kε

)−1
goes

to zero as n and S increase.
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Under the previous assumptions, the directional quantile classifier C based on

d(y, θ, υ,ω) =
S∑
s=1

{Φ(2)(θ; u>s y)− Φ(1)(θ; u>s y)},

makes the correct choice asymptotically. More specifically, as p→∞, the classifier C makes the

correct decision with probability

P (1){C(Y) = 1}+ P (2){C(Y) = 2}

converging to 1 if both n1 and n2 diverge with p, where P (k), k = 1, 2 denotes the probability

computed under the assumption that Y is drawn from population k.

The proof of Theorem 3 is shown in Appendix. Here we only comment on the assumptions,

which are similar to those given in Hall et al. (2009, Theorem 2). In particular, condition (i)

requires the number of directions S and the training sample size be of the same order. Condition

(ii) implies that classes differ up to a location-shift µ(k)
j from a θ-quantile centered distribution,

or, in other words, that the discriminative information is contained in the marginal quantiles of

the p variables. We also assume finite variances of the Wj’s, thus avoiding the more restrictive

mixing condition assumed in Hall et al. (2009, Theorem 2). Condition (iii) concerns uniform

continuity and boundedness along every direction s. Assumption (iv) is related to the proportion

of nonzero signals that can decrease to 0 as the number of directions S and the sample size n

increase, without affecting the consistency of the classifier.

4 Simulation study

We assessed the performance of the proposed classifier in a simulation study under five scenarios

with two populations. In the first scenario, observations were generated independently from a

multivariate distribution with normal marginals. In the second scenario, observations were gen-

erated independently from a multivariate distribution with Student’s t3 marginals. In the third

scenario, observations were generated as in the second scenario, but each variable was subse-

quently transformed according to x 7→ log(|x|) to induce asymmetry. In the fourth scenario

observations were generated as in the second scenario, but each variable was subsequently trans-

formed according to x 7→ log(|x|) or to x 7→ − log(|x|) depending on whether observations
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belonged to one or the other population, respectively. Finally, in the fifth scenario observations

were generated independently from a multivariate distribution with exponential marginals. For

each scenario, we considered both uncorrelated and correlated variables. This gave ten data gen-

erating processes.

Data were generated for each combination of overall sample size n ∈ {50, 100, 500} (with

n/2 observations in each class) and dimension p ∈ {10, 50, 100, 500}. All in all, this resulted

in 10 × 3 × 4 = 120 simulation cases. The two populations differed by a location shift equal

to 0.4, except for the fourth scenario where the location shift was naturally determined by the

opposite skewness. The variance-covariance matrix used to generate correlated variables was

defined by using Σ = A>diag(σ1, σ2, . . . , σp)A with values of A and σ’s determined so that

pairwise correlations were on the interval (−0.63, 0.80). Observations in the training and test

datasets were generated in the same way. Data generation under each setting was replicated 100

times.

We compared the directional quantile classifier (DQC) in terms of misclassification rate on

the test data with that of the centroid classifier (Centroid) (Tibshirani et al., 2002), median clas-

sifier (Median) (Hall et al., 2009), componentwise quantile classifier (CQC) (Hennig and Viroli,

2016a), ensemble quantile classifier (EQC) (Lai and McLeod, 2020), Fisher’s linear discriminant

analysis (LDA), k-nearest neighbour (KNN) (Cover and Hart, 1967), penalised logistic regres-

sion (PLR) (Park and Hastie, 2008), support vector machines (SVM) (Cortes and Vapnik, 1995;

Wang et al., 2008), and naı̈ve Bayes classifier (Bayes) (Hand and Yu, 2001). Tuning parameters

for PLR, KNN, and SVM where selected using cross-validation. For the CQC, the Galton cor-

rection was used to reduce skewness and optimal quantile was selected by minimising the error

rate on the training set (Hennig and Viroli, 2016a).

We used the package Qtools (Geraci, 2016, 2020) for the directional quantile classifier; the

package quantileDA (Hennig and Viroli, 2016b) for the centroid, median and componentwise

quantile classifiers; the package eqc (Lai and McLeod, 2019) for the ensemble quantile classi-

fier; the package MASS (Venables and Ripley, 2002) for linear discriminant analysis; the package

class (Venables and Ripley, 2002) for k-nearest neighbour; the package e1071 (Meyer et al.,

2019) for support vector machines and Bayes classifiers; and the package stepPlr (Park and
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Hastie, 2018) for penalised logistic regression. All analyses were carried out in R version 4.0.0

(R Core Team, 2020).

For estimation, we applied Algorithm 1 using a sequence ofR = 50 quantile levels θ between

0.01 and 0.99, and Sr = 100 directions per quantile. The misclassification rates averaged over

100 replications for all simulation cases are reported in Table 2 for the Gaussian marginal case,

and the remaining scenarios can be found in the Web Supplement. The results indicate that

the performance of our proposed classifier improves as n and p increase, in agreement with the

theoretical results. Our classified generally outperforms our competitors, with some exceptions

with low dimension and/or low sample size, in which it is anyway still among the best approaches.

Moreover, as n and p increase the standard errors of the misclassification rates tend to zero, thus

indicating the stability of the classification across the several experiments.

5 Clinical trial on Crohn’s disease

We analysed data from a matched case-control study in first-degree relatives (FDRs) of Crohn’s

disease (CD) patients originally published by Sorrentino et al. (2014). The goal of the study was

to identify asymptomatic FDRs with early CD signs using several intestinal inflammatory mark-

ers. The latter included hemoglobin, erythrocyte sedimentation rate, C-reactive protein, fecal

calprotectin, and average mature ileum score. In our analysis, we grouped subjects into 2 classes,

one with signs of inflammation (n1 = 9 subjects with early or frank CD) and one with normal

values of markers (n2 = 26 subjects with no signs of inflammation, including healthy controls).

In a separate analysis, we augmented the dataset with 45 artificial markers generated from in-

dependent standard normal distributions to investigate the impact of uninformative noise on the

performance of the DQC. For estimation, we applied Algorithm 1 using a sequence of R = 25

quantile levels θ between 0.01 and 0.99, and Sr = 10000 directions per quantile. We compared

the estimated misclassification rate of our DQC to the rates estimated for all the classifiers in-

cluded in our simulation study (Section 4). For the purpose of this study, the misclassification

rate was estimated by the proportion of subjects that are misclassified when each of them is left

out of analysis (leave-one-out validation). The classification error estimates are reported in Table

3. The proposed DQC outperforms its competitors in both the original (p = 5) and noisy (p = 50)
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versions of the dataset.

6 Conclusions

We proposed directional quantile classifiers, whose predictive ability is consistently good in both

simulation and real data studies, on small and large dimensional classification problems. In par-

ticular, the empirical results show that our approach either outperforms its competitors or, when

this is not the case, its performance is still in the ballpark of that of the best classifiers. Such a reli-

able behaviour across different scenarios is not shared by the other selected classifiers. Moreover,

the directional quantile classifiers enjoy optimal theoretical properties under certain assumptions.

Our theoretical results indicate that one can sample directions from the optimal orthant defined by

Theorem 2, thus reducing the computational burden, but not at a significant expense of the clas-

sifier’s performance. Should the computational burden be prohibitive, one can exploit Theorem

1 to use a single quantile (R = 1). Our strategy allows us to balance the importance of quantile

levels and directions used for classification by means of weights, which can be optimised using

a convenient closed-form expression. The use of quantiles makes our approach particularly ad-

vantageous with heavy-tailed and asymmetric distributions, and when the populations differ by

shape, given the natural ability of quantiles to flexibly model distributions. Also, our approach

deals with correlation by means of projections, thus improving on the performance of quantile

classifiers when correlation is ignored.

We often stressed that there are alternative ways for the practical implementation of the pro-

posed DQC. In general, we recommend using multiple quantiles and directions in the optimal

orthant. However, this particular strategy does not lend itself to a simple interpretation of the

mechanics of the DQC, which can be seen as acting on a coarsened and projected versions of the

entire multivariate distributions. In contrast, if a single quantile and direction are used, then their

practical role in the classification process and subsequent interpretation become more evident.

We cannot exclude that a single-quantile strategy might be theoretically a better choice (espe-

cially for moderate to large sample sizes in view of Assumption 1 which requires the number of

directions to be proportional to the sample size), although during our preliminary investigations

using simulated and real data we did not observe meaningful differences. If anything, using mul-
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tiple directions has its own limitation since the number of directions needed to span a p-sphere

with a regular grid becomes prohibitive already at modest values of p.

A Proofs of the theoretical results

A.1 Proofs of Lemma 1 and Theorem 1

The proofs of Lemma 1 and Theorem 1 follow the arguments given in Hennig and Viroli (2016a,

Supplementary Material). Here, we briefly sketch the main idea. The condition that a point

z0 exists with παgα(z0; u) = πβgβ(z0; u) so that παgα(z; u) > πβgβ(z; u) for z on one side

of z0 and παgα(z; u) < πβgβ(z; u) for z on the other side, ensures that the densities cross in a

point where the Gini transvariation area is minimized. The optimal value θ that minimises the

theoretical misclassification probability can be obtained by setting the first derivative of (11) to

zero, from which

παgα{Q̃(θ; u)} = πβgβ{Q̃(θ; u)}.

By assumption, there exists θ ∈ (0, 1) such that Q̃(θ; u) = z0. Hence, the identity above

is satisfied because Qα(θ; u) and Qβ(θ; u) are continuous functions of θ that converge to the

lower and upper bound of Z for θ approaching either 0 or 1, respectively. Furthermore, under

the assumptions of Theorem 1, the optimal Bayesian classifier has a single decision boundary at

Q̃(θ; u).

A.2 Proof of Theorem 2

We start by the following general result that will be used in the proof.

Lemma 2 Let z be a realisation of either Z(1) or Z(2), then

Φ(2)(θ; z)− Φ(1)(θ; z) ≤ Q
(2)
Z (θ)−Q(1)

Z (θ),

where Φ(k)(θ; z) = θmax(η(k), 0) + (1− θ) max(−η(k), 0) and η(k) = z −Q(k)
Z (θ), k = 1, 2.

In order to prove this, assume Q(1)
Z (θ) ≤ Q

(2)
Z (θ) without loss of generality. Let ∆(θ; z) =

Φ(2)(θ; z) − Φ(1)(θ; z) and consider three possible, distinct cases: z ≤ Q
(1)
Z (θ), Q(1)

Z (θ) < z <
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Q
(2)
Z (θ), and Q(2)

Z (θ) ≤ z. If z ≤ Q
(1)
Z (θ), then

∆(θ; z) = (1− θ){Q(2)
Z (θ)− z} − (1− θ){Q(1)

Z (θ)− z}

= (1− θ){Q(2)
Z (θ)−Q(1)

Z (θ)} ≤ Q
(2)
Z (θ)−Q(1)

Z (θ)

by definition. If Q(1)
Z (θ) < z < Q

(2)
Z (θ), then

∆(θ; z) = (1− θ){Q(2)
Z (θ)− z} − θ{z −Q(1)

Z (θ)}

= θ{Q(1)
Z (θ)−Q(2)

Z (θ)}+Q
(2)
Z (θ)− z

≤ θQ
(1)
Z (θ)−Q(2)

Z (θ) ≤ Q
(2)
Z (θ)−Q(1)

Z (θ).

Finally, if Q(2)
Z (θ) ≤ z, then

∆(θ; z) = θ{z −Q(2)
Z (θ)} − θ{z −Q(1)

Z (θ)}

≤ Q
(2)
Z (θ)−Q(1)

Z (θ).

This completes the proof of Lemma 2. By Lemma 2, the differences Φ(1)(θ; u>x)−Φ(2)(θ; u>x)

and Φ(2)(θ; u>x)−Φ(1)(θ; u>x) are upper bounded byQ(2)
Z (θ; u)−Q(1)

Z (θ; u) sinceQ(2)
Z (θ; u) >

Q
(1)
Z (θ; u). Therefore the quantity in (6), which is to be minimised with respect to u subject to

‖u‖ = 1, is uniformly bounded above by

π1

∫
X

{
Φ(1)(θ; u>x)− Φ(2)(θ; u>x)

}
dF (1)(x)

+ π2

∫
X

{
Φ(2)(θ; u>x)− Φ(1)(θ; u>x)

}
dF (2)(x) + λ(u>u− 1)

≤ Q
(2)
Z (θ; u)−Q(1)

Z (θ; u) + λ(u>u− 1)

= (QW (θ; u) + u>µ(2))− (QW (θ; u) + u>µ(1)) + λ(u>u− 1)

= u>(µ(2) − µ(1)) + λ(u>u− 1).

To find u, we minimise the Lagrangian function u>(µ(2)−µ(1))+λ(u>u−1) which has solution

µ(2) − µ(1)

‖µ(2) − µ(1)‖
.

Finally, equation (12) is obtained by observing that µ(k) is the quantile of X(k) at θ, since

QX(θ) = 0 by assumption.
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A.3 Proof of Theorem 3

Let Q(k)
X (θ; us) be the empirical quantile computed on the projected training data u>s X(k). We

write

Φ(k)(θ; u>s Y) = γ(k)s (θ)|u>s Y −Q(k)
X (θ; us)|,

where γ(k)s (θ) = θ + (1 − 2θ)I{u>s Y < Q
(k)
X (θ; us)}. Let µy denote the vector of quantiles of

Y, and put µ(k)
y = µ(k) − µy for k = 1, 2 and write V = Y − µy. By the triangular inequality

γ(2)s (θ)|u>s Y −Q(2)
X (θ; us)| − γ(1)s (θ)|u>s Y −Q(1)

X (θ; us)|

= γ(2)s (θ)|u>s V − u>s µ
(2)
y | − γ(1)s (θ)|u>s V − u>s µ

(1)
y |

+ τ2|Q(2)
X (θ; us)− u>s µ

(2)|+ τ1|Q(1)
X (θ; us)− u>s µ

(1)|,

where τ1 and τ2 satisfy |τk| ≤ 1, k = 1, 2. Hence

T1 ≡
S∑
s=1

γ(2)s (θ)|u>s Y −Q(2)
X (θ; us)| − γ(1)s (θ)|u>s Y −Q(1)

X (θ; us)|

= T2 + τ1R1 + τ2R2,

where T2 =
∑S

s=1 γ
(2)
s (θ)|u>s V−u>s µ

(2)
y | − γ(1)s (θ)|u>s V−u>s µ

(1)
y |, R1 =

∑S
s=1 |Q

(1)
X (θ; us)−

u>s µ
(1)| andR2 =

∑S
s=1 |Q

(2)
X (θ; us)−u>s µ

(2)|. Given the convergence of the empirical quantiles

to the population quantiles,

P (1)(T1 > c1 − 2c2Sn
−1/2) ≥ P (1)(T2 > c1)− P (R1 > c2Sn

−1/2)− P (R2 > c2Sn
−1/2)

≥ P (1)(T2 > c1)− 2
S∑
s=1

e−2n1δ
(1)
s − 2

S∑
s=1

e−2n2δ
(2)
s

for any c1, c2 > 0, where

δ(k)s =

[
min

{
F (k)

(
u>s µ

(k) +
c2S

n1/2

)
− θ, θ − F (k)

(
u>s µ

(k) − c2S

n1/2

)}]2
.

Now define

ds = E
{
γ(2)s (θ)|u>s (V − µ(2)

y )| − γ(1)s (θ)|u>s (V − µ(1)
y )|

}
.

Given ε > 0, let Kε denote the set of indices s ∈ {1, 2, . . . , S} such that

|γ(2)s (θ)u>s µ2 − γ(1)s (θ)u>s µ1| > ε
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∀θ ∈ (0, 1). Under the assumption that Y has distribution F (1), we have

ds = E
{
γ(2)s (θ)|u>s (Y − µ2)| − γ(1)s (θ)|u>s (Y − µ1)|

}
= γ(2)s (θ) E1 |u>s (Z + µ1 − µ2)| − γ(1)s (θ) E1 |u>s Z|,

where E1 is the expectation under P (1). Therefore, by assumption (iii) and provided c ≥ ε, we

have ∑
s∈Kε

ds ≥ a(c)(]Kc)

where a(c) > 0, with a(c) = γ
(2)
s (θ) E1 |u>s (Z + µ1 − µ2)| − γ(1)s (θ) E1 |u>s Z| in view of (iii).

As a consequence, for E1(T2) =
∑S

s=1 ds and ε→ 0, and ∀c, we have

E1(T2) ≥ a(c)(]Kc), (13)

where ]A denotes the cardinality of the set A. By the Chebychev inequality and provided that

c1 <
1
2

E1(T2), we have

P (1)(T2 > c1) ≥ 1− P (1)(|T2 − E1(T2)| > c1) ≥ 1− c−21 E1{T2 − E1(T2)}2

≥ 1− c−21 var1(T2) ≥ 1− A2c
−2
1 S, (14)

where var1 denotes the variance under P (1) and the second inequality follows from assumption

(ii); more specifically

var1(T2) = var1

{
S∑
s=1

(
γ(2)s (θ)|u>s (V − µ(2)

y )| − γ(1)s (θ)|u>s (V − µ(1)
y )|

)}

≤ var1

{
S∑
s=1

(
γ(2)s (θ)u>s (V − µ(2)

y )− γ(1)s (θ)u>s (V − µ(1)
y )
)}

= var1

{
S∑
s=1

(
γ(2)s (θ)u>s (W + µ(1) − µ(2))− γ(1)s (θ)u>s W

)}

≤
S∑
s=1

A2u
>
s us + 2

S−1∑
s=1

S∑
s′=s+1

A2u
>
s us′ .

Stam (1982) proved that a uniform random variable on the sphere, U ∈ Rp, converges to a

standard Gaussian as p → ∞. Therefore, for S → ∞, by the strong law of large numbers we

have
2
∑S−1

s=1

∑S
s′=s+1A2U

>
s Us′

S(S − 1)

a.s.−−→ A2 E(Ξ>1 Ξ2) = 0,
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where Ξ1 and Ξ2 are two independent standard Gaussians. This explains why the covariances

become negligible in the last part of (14) as p increases.

It remains to prove that c1 < 1
2

E1(T2). Consider c1 = c3S
n1/2 , where c3 is a positive constant.

By (13), the latter holds if c3Sn−1/2 < 1
2
a(c)Kc. But this is true because it implies that

S
(
n1/2]Kc

)−1
<

1

2
a(c)c−13 ,

where the term on the left goes to zero according to assumption (iv) while a(c) > 0, thus c−13 > 0.

For c1 = c3S
n1/2 , we have

P (1)(T1 > c3Sn
−1/2 − 2c2Sn

−1/2) ≥ 1− A2
n

c23S
− 2

S∑
s=1

e−2n1δ
(1)
s − 2

S∑
s=1

e−2n2δ
(2)
s .

We wish to choose c3 and c2 such as

P (1)(T1 > 0) ≥ 1− ε.

Therefore, we fix ε and choose c3 such that A2

c23A1
≤ ε, where A1 is defined in assumption (i). It

follows that
A2S

c21
= A2

n

c23S
≤ A2

c23A1

≤ ε.

Then we choose c2 such that c3 > 2c2 and observe that 2
∑S

s=1 e
−2n1δ

(1)
s + 2

∑S
s=1 e

−2n2δ
(2)
s → 0

for n, S → ∞. Since this is true for each ε > 0, then P (1)(T1 > 0) → 1, and similarly

P (2)(T1 < 0)→ 1.
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Table 3: Leave-one out estimates of the misclassification rates for the Crohn’s disease dataset

(p = 5) and its noisy version (p = 50) using ten classifiers (DQC, directional quantile classifier;

Centroid, centroid classifier; Median, median classifier; CQC, componentwise quantile classifier;

EQC, ensemble quantile classifier; LDA, linear discriminant analysis; KNN, k-nearest neighbour;

PLR, penalised logistic regression; SVM, support vector machines; Bayes, naı̈ve Bayes).

p = 5 p = 50

DQC 0.229 0.229

Centroid 0.286 0.286

Median 0.400 0.400

CQC 0.314 0.343

EQC 0.314 0.314

LDA 0.257 0.543

KNN 0.371 0.343

PLR 0.286 0.343

SVM 0.257 0.257

Bayes 0.286 0.257
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