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Unified conditional frequentist and Bayesian
testing: computations in practice and
sample size determination

Summary - Hypothesis testing is one of the areas of inference in which Bayesian and
frequentist methods tend to disagree. Berger et al. (1994) proposed a modification of
the usual Bayesian testing, which made it acceptable from a conditional frequentist
point of view. In this article, we propose a simple numerical method to avoid heavy
computations when applying their test. We motivate this by showing the case of
testing the parameter of an exponential random variable. We are confident that this
simplification will encourage people in using the test in applications. Finally, a
procedure for choosing the sample size for this test is proposed.
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1. INTRODUCTION

Hypothesis testing is one of the areas of inference in which Bayesians
and frequentists tend to disagree. The classical frequentist approach builds a
rejection region from fixed probability of incorrect rejection (Type I error),
usually denoted by «. After the test, one reports this pre-experimental error
measure; sometimes together with the dual, the probability of incorrect accep-
tance (Type II error), usually denoted by . This practice has been criticized
for ignoring experimental evidence provided by the data for or against the null
hypothesis. A common alternative is the p-value, but unfortunately it can be
misleading as a measure of evidence. See for instance Berger and Delampady
(1987), and Royall (1997) for a discussion on the concept of statistical evi-
dence. More recently, Sellke efal. (2001) discussed many issues involving the
use of the p-values in statistical analysis. Kiefer (1977) has fulfilled the need
for data dependent error probabilities, through conditioning on a well chosen
statistic. Suppose S(x) is some statistic where larger values indicate data with
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244 A. FARCOMENI

greater evidential support for (or against) the null hypothesis. Conditional error
probabilities are given by:

a(s) =Pr (Type I error |S(x) =) (D)
B(s) = Pr (Type II error |S(x) =)

For a discussion on the conditional frequentist approach, see Brownie and Kiefer
(1977). For a review on conditioning, see for instance Frosini (1999). On the
other side, Bayesian methods are usually criticized for lack of objectivity, but
naturally report and base the decision on measures of evidence, like posterior
probabilities of hypotheses, and the Bayes factor.

Berger etal. (1994) devised a conditioning statistic S(x), such that, outside
a non-decision region (NDR), the conditional frequentist test of a precise hy-
pothesis and the usual Bayesian test would agree both in the action to be taken
(acceptance or rejection of Hy) and in the reported error probabilities. i.e.,
Bayesians and (conditional) frequentists will always make the same decision,
and report the same numbers; even if these are assigned different interpreta-
tions. The NDR is simply a subset of the sample space that does not allow
one to make a choice between the hypotheses. In a sense, it’s the “price” to
pay for the agreement between the methods.

The procedure is easily applied: one needs only to compute the lower and
upper bounds of the NDR, r and a; and then reject Hj if the test statistic is
smaller than r, or retain H, if it is bigger than a. We will describe this later
in more detail, together with considerations on the error probabilities.

In general, exact determination of r and « involves tedious computation,
as we will argue when showing the extension of the procedure to testing the
mean of an exponential distribution. In this paper, we show a simple method
to obtain the thresholds of the NDR via simulation. This simulation method
draws independent samples from distributions ready at hand, thus making the
procedure straightforward. We hope the simulation method will stimulate people
to use the modified test. Reporting the thresholds, even when using a full-
Bayesian or unconditional-frequentist approach, would suggest if and when the
two methodologies are converging; thus enriching the analysis and making it
more widely acceptable.

The remaining of the paper is as follows: in Section 2 we will review
the modified Bayesian-frequentist test. Section 3 will extend the procedure to
testing the parameter of an exponential distribution, both in the simple and
composite alternative case. Section 4 will outline the simulation method for
computing the bounds of the NDR. In Section 5 we also propose two methods
of choice of the optimal sample size for the modified test. We follow De
Santis (2003), and show that the modified test avoids some known problems
associated with that methodology.
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2. THE MODIFIED BAYESIAN-FREQUENTIST TEST

Let f(x|0) be the density of the data, depending on the unknown parameter
of interest & € ©; define the likelihood function [(f) = f(x|0) (x is the
observed data, and thus fixed). Let m;(0) be the prior distribution assigned on
the space ©.

We use a 0-1 loss function (see Bernardo and Smith (1994)) with equal
prior probabilities for the two hypotheses. Berger ef al. (1994) builds the
procedure for generalized O-1 losses and/or unequal prior probabilities. In a
further subsection we will comment on the extension to the case of unequal
prior probabilities. We will always test a precise null hypothesis 6 = 6.
The alternative will be either precise or two-sided (no one-sided problem is
considered).

In the Bayesian framework, the Bayes factor is commonly used for testing
(see for instance Kass and Raftery (1995)). The marginal distribution under the
null will be my(x) = 1(6y), while the marginal under the alternative hypothesis
is mi(x) = [(6,) for a precise alternative and m(x) = [1(0)7(0) d6 for

®

the composite alternative. Define the Bayes factor to be: B(x) = :Z?g; The
Bayes factor compares the two marginals, to determine which hypothesis is
more supported by the data.

It is straightforward to see that the posterior probabilities of the two hy-
potheses are:

B(x)

Pr(Hy|x) = a*(x) = m; (2)
and of course |
Pr(H,|x) = B*(x) = 11 BG) (3)

Here we define the posterior error probability as the posterior probability of
the rejected hypothesis.
The usual Bayesian test consists in computing the Bayes factor B(x) and

then:
{ B(x) <1, reject Hy, report a™(x)

B(x) > 1, retain H,, report B*(x)

We will now introduce the modified test, as it is proposed in Berger et al.
(1997). Let F;(s) = Pr(B(x) < s|H;), i =0, 1 be the CDF of the Bayes factor
under H;, which we suppose continuous and invertible. Define the function

Y(s) = Fy ' (1 = Fi(9)), “)

and the statistic

S(x) = min{B(x), ¥~ (B(x))} ®)
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Define the lower and upper bound of the NDR as:

r =min(1, ¥ (1))

(59
a = max(1, (1))
Then, the unified Bayesian-frequentist test will be done as follows:
B(x) <, reject Hy
{ r < B(x) <a, do nothing, (6)
B(x) > a, retain H

where B(x) is the Bayes factor.

Berger et al. (1994) shows that frequentist error probabilities conditioned
on S(x) will be equal to the posterior probabilities when both H, and H; are
simple, outside the NDR.

Berger eral. (1997) shows that when H,; is composite, the conditional Type
I error probability a(s) will be equal to the posterior probability of H; o*(x),
outside the rejection region. The posterior probability of Hy will be equal
to an opportune expected value of the Type II conditional error probability:
[ B@|s)m (B|s) d6 = B*(x), where 71 (0]s) is the posterior p.d.f. under H; on
®

the observed value s of S(X).

The equality of «a(s) and o*(x) is the key point in these two results: Type
I error is usually perceived in classical statistics as the primary error measure.
In this sense, this agreement is crucial in the acceptance of the procedure.

Surprisingly, it is never necessary to actually compute the conditioning
statistic S(x).

To summarize, the motivation of introducing a non-decision region in the
Bayesian test is two-fold. On one hand, we want conditional frequentist error
probabilities, at least of the Type I error, to coincide with (Bayesian) posterior
error probabilities. On the other hand, from a Bayesian point of view, it is
not acceptable to reject an hypothesis with a posterior error probability greater
than 50%. It is straigthforward to see that the smallest set in which the two
things won’t happen is the NDR.

Berger eral. (1994) introduced the modified test in the more general case,
for the simple hypotheses case. Berger ef al. (1997) extended the procedure
to the composite alternative with 0-1 loss, equal prior probabilities. They
also showed the technique for the one-sided and two-sided normal testing, for
comparing normal means, with known and unknown variance. Dass and Berger
(1999) provided results in the case of composite null hypothesis. Berger et al.
(1998) proposed an efficient way to apply the modified test in the case of
sequential testing of nested hypotheses.
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2.1. Unequal prior probabilities of the hypotheses

It is not always the case that prior probabilities of the hypotheses can
be assumed to be equal. Following Berger ef al. (1994), it is possible to

generalize the test as follows: let py, be the prior probability of Hy. Obviously,

pr, = 1 — pg, will be the prior probability assigned to H;. Let n = %. It
0

is straightforward to see that the posterior probabilities will be

ay(B(x)) = B(x)/(n+ B(x))
for Hy and
By(B(x)) = 1/(n + B(x))
for H,. Berger et al. (1994) show that the generalized thresholds are:
rp =1 and a, = Fy' (1 = nFi(p) if  Fon) < 1= nFi(),
{ ry = F7'(1/n[1 — nFy(n]) and a, =n if Fo(n) > 1 —nFi(n).
Then, the test will be as usual:

B(x) <ry, reject Hyp with error probability o, (B(x))
{ r, < B(x) <a,, no decision
B(x) = ay, retain H, with error probability 8,(B(x)),

Berger et al. (1994) show that the posterior error probabilities, outside the
no decision region, are exactly equal to the error probabilities conditioned on
the statistic S(x) defined in (5). Note that the choice of 5, the ratio of the
prior probabilities, has a strong effect on the posterior error probabilities and
the thresholds. We will discuss further results on the case of unequal prior
probabilities of the hypotheses in Section 5.

3. TESTING THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION

In this section we will show the modified test applied to testing the pa-
rameter of an exponential distribution.

3.1. Simple hypotheses

Let (x;,...,x,) be a vector of i.i.d. random variables, conditional to an
unknown parameter 6; such that f(x;|0) = e~ x; >0, 6 > 0.
Let us test the simple versus simple hypotheses, let s be the sufficient

statistic s = Zx,-, and A = 6p/0;, with of course A # 1 for identifiability

i=l
reasons.
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It is straightforward to show that B(s) = A"e~® =%, We will now need
to compute ¥ (1) and maybe ¥ ~'(1) as defined in (4), i.e., we will need the
two cdfs of the Bayes factor Fy(s) and Fj(s), and their inverses; to determine
r and a as in (6). Let s;,, for b fixed in R, be the solution to the equation

B(s) = b, )

o — 01
We have that 256 is a chi-square random variable with 2n degrees of
freedom, hence

H <2Mn @) J(h — 1)> it A<l
Fo(b) = " ®)
1—H(2A1n<?)/()\—1)) it A>1
while Ny
H (2111 <;) J(h — 1)> it A<l
Fi(b) = y ©)
1—H(2In(?)/(k—l)) it A1,

where H(x) is the CDF of a chi square with 2n d.f.
On the other hand,

. H~'(k) .
Aexp{—(k—l) ™ } if A<1
Fy (k) =
H'(1-k| .
A" exp{—(A — I)T} if A>1
and g
A"exp{—(k—l)Hz()} if A<1
Flk) =
H'(-k)| .
)\”exp{—()\—l)f} if A>1.

It is immediate to see that, V A £ 1, ¥ () = Fo_l(l — Fi()) is:

- 21n (2
om-reof 2500 (o2}

(M)Note that, if 6y > 6y, the equation is solved V 0 < b < A". If §y < 0y, the equation is solved

Vb > A", butinthatcase A < 1 and lim A" =0.
n——+o0o
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—1 __an 1 —1 2)\'111(%>

In practice, to find » and a, one only needs to evaluate this last two
functions in b = 1; then compute r and a as in (5') and do the test as in (6).

The next theorem shows that only cases in which A > 1, i.e. 6y > 6, are
to be considered in this case; since the case in which A < 1 is symmetric and
can be derived from the first.

Theorem 1. Let (s, 1) be ¥ (s) computed when A = [, and F;(s,[) the CDF of
B(s) conditional on H; being true and » = 1. Then, ¥ (1, 1) = (y~1(1,1/1))7!,
and Fo(1, ) =1 — Fi(1,1/X)

and

The theorem implies that, when A < 1, if r and a are computed for 1/A,
the NDR is: {x € X/ 1/a < B(x) < 1/r}. For a proof of the theorem, see
Appendix.

Example 1. Let us illustrate the results in Theorem 1 with an example. Let
n = 10 and the system of hypotheses be:

{H0290=9
H1291=3.

In this case, A =3, so r =1 and a = 1.83. If we want to test the hypotheses:

{H()IQ():O.I
H1191:0.3,

with a sample of n = 10 elements; A = 1/3 so, by Theorem 1, r = 1/1.83 =
0.546 and a = 1.

Table 1 shows values of r and a for some n and A. It is interesting to
notice that, for these values of A, the size of the NDR is practically constant
with respect to n.

TABLE 1. Values of r and a for simple-simple testing of an exponential parameter.

n A=1.5 2 3

1 r=1 a=123 r=1 a=141 r=1 a=1.69
5 r=1 a=1.28 r=1 a =149 r=1 a=1.82
10 r=1 a=1.28 r=1 a=1.50 r=1 a=1.83
20 r=1 a=1.29 r=1 a=1.51 r=1 a=1.84
30 r=1 a=1.29 r=1 a =151 r=1 a=1.84
50 r=1 a=1.29 r=1 a=1.51 r=1 a=1.84
60 r=1 a=1.29 r=1 a=1.51 r=1 a=1.86
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3.1.1 —Probability of the NDR

In many applications, the size of the NDR is non decreasing with n. On
the other hand, Berger ef al. (1997) note that, under certain conditions, the
probability of falling into the NDR is rapidly decreasing with n:

Pr(r < B(x) <alH)Ze™ 50, i=0,1

where [ = —logoinfl [ mb()ym; " (x) dx.
<t<

In this subsection we will numerically analyze the probability of falling in
the non decision region in the exponential case with simple hypotheses.

Using (8) and (9), for the chosen values of A (¥(1) > 1 in all cases) we
have:

Pr(l < B(x) < alHy) = Fola) — Fi(1) =1 - Fy(1) — Fi(1) =
2niln i 2nln A
— 1 ( e (TE) -

A—1 A—1
where H () is the CDF of a chi-square with 2n degrees of freedom. To compute
Pr(1 < B(x) < a|H)) it is necessary to proceed numerically, since a closed

form expression for Fj(a) is not available.

Figure 1 shows the behavior of the probability of the NDR under H,. This
probability is almost zero for n > 20. Even though the curves for different

values of A are very close, the bigger A, the smaller the probability of non
deciding; since it is easier to discriminate between the hypotheses.

0.25 5,'

0.2

0.15

S 10 15 20

Figure 1. Pr(1 < B(x) < a|Hp) for the exponential test, simple hypotheses, various A
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Figure 2 shows the probability of falling in the NDR under H,, as a function
of n, for A = 1.5. The probability of non deciding when Hj is false is much
smaller than when it is true. This is intuitive, since the NDR is a part of the
usual “acceptance” region (a > 1).
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Figure 2. Pr(1 < B(x) < a|Hy), for the exponential test, simple hypotheses, A = 1.5

Figure 3 shows the marginal probability of falling in the NDR as a function of n.
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Figure 3. Pr(1 < B(x) < a), for the exponential test, simple hypotheses, > = 1.5
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3.2. Composite alternative hypothesis

Let us now apply the modified Bayesian test to the same model as in 3.1,
with a composite alternative hypothesis.

We will need to choose a prior for 8 € ®,. To simplify, we will use the
conjugate prior(?), a gamma(8, 1). It is straightforward to see that under H,
the sum of the values of the observations s is a gamma — gamma($, A, n):

AMs" 10 (n + 8)
L) (n)(A + s)rts’

mi(s) =

For definition and properties of the gamma-gamma see for instance Piccinato
(1996) or Bernardo and Smith (1994). The Bayes factor is then:

9(1)16—00*51-*(5)()\ + S)n+5

Bls) = W+ 8)

3.2.1 —Choice of prior parameters

Prior parameters A and § will be chosen using prior information.

One possibility is to make the prior mean to be equal to the expected value

of x;|Hy. The condition is % = %, Le.,

A = 6,8. (10)

Modifications to this condition are straightforward.

Another sensible approach is to choose how much strength to give to the
prior information with respect to one observation. If 1/k is this proportion,
one needs only fix the remaining parameter, §, such that prior variance is k
times the variance of x;|Hy. l.e., é‘—o = f—z that is, given condition (10), § = %
It is customary to set k to one (see for instance Kass and Wasserman (1995)),
but any positive value is possible. Usually, one would set k > 1.

As an example, figure 4 shows the Bayes factor as a function of x with
6h=1, §=r1=2/3, n=10.

(3)Note that, in this section, A is something completely different from what indicated previously with
the same symbol.
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5 10 15 20 25

Figure 4. B(s) in the exponential test, composite alternative.
3.2.2 —Determination of the Thresholds

Exact determination of the thresholds r and a is as follows: Let s, and
sp be the two admissible solutions of the equation B(s) = b, s, < spo. If
there is only one, or none solution, the missing is set to zero in the following
formulas.

Since Fy(a) = Pr(B(s) < a| Hy) = Pr(s < s,.11Hp) + Pr(s > s,.2/Hy) we
have that: Fy(a) = H(2s,,160) + 1 — H(2s,26p); and, Fi(b) = GG(sp1) +1 —
GG (sp2), where GG(s) is the CDF of a gamma — gamma($, A, n). Hence,
solving the equation Fy(a) = 1 — Fi(1) is equivalent to solve: H(26ps,1) +
1 — H(20054,2) = GG(s12) — GG(s1,1),

We need to compute ¥ (1) by solving the system:

B(s) =1
{ B(s) =y (1) (11)
H26psy1),1) + 1 — HQ20sy1),2) = GG(s12) — GG(s1,1)

Ifyd)>1, fix r =1 and a = ¢¥(1). Otherwise, one needs to compute
¥ ~!(1) by solving the system

B(s) =1
{ B(s) =r
H(200s1,1) + 1 — H(26ps512) = GG(s,2) — GG (s1,1),

and fix r = ¥~ '(1), a = 1.
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Note that all the computations are much more complex than in the case
where both hypotheses are simple. In general, it is evident that there are two
drawbacks to exact calculation of the thresholds. First of all, it is very rare to
find a closed form expression for s, ;, especially when it is not unique, and so
one must proceed numerically. Moreover, the number of solutions s, ; varies
case by case, and so the way they enter into the computation of F;(-). This
means that a unifying general procedure cannot be given, coded, and used in
practice.

Note also that this problem makes it really hard to study the robustness
with respect to the prior. Each time the form of the prior is changed, the
researcher must start over from scratch.

For this reason, a general approximate method, based on simulation, is
proposed in Section 4, that will make it straightforward to get the thresholds
without having to go into tedious computations and programming, independently
for the model assumed for the data and for the parameters.

Table 2 shows the exact values of r and a, when 6, = 1, for some choices
of n, 8, A. Note that the size of the NDR is increasing with n, even though it is
always reasonably small. Note moreover that there is strong dependence on the
choice of the prior parameters. This is a well known feature of the modified
test in the composite alternative case, noted also by Berger efal. (1997) in the
case of normal distributed random variables. For fixed n, the size of the NDR
is increasing as A = § decrease. This is because prior variance is increasing as
prior parameters simultaneously decrease, making the prior distribution more
“flat” and making it harder to discriminate between the hypotheses.

TABLE 2. Exact values of r and a for the exponential test, composite hypothesis, A = 6.

n =1 2/3 1/2

5 r=1 a=2.03 r=1 a=231 r=1 a=253
10 r=1 a=242 r=1 a=273 r=1 a =3.01
15 r=1 a=2.70 r=1 a=3.01 r=1 a=3728
20 r=1 a=2.89 r=1 a=3.18 r=1 a=2343
30 r=1 a=3.16 r=1 a=3.51 r=1 a=23.73
40 r=1 a=2342 r=1 a = 3.61 r=1 a=4.11
50 r=1 a=3.57 r=1 a=23.85 r=1 a=4.17

We also have dependence on the value of 6,. Table 3 shows values of
Y (1) for different 6y, with n =20 and § = A = 1.

We have that (1) is slowly increasing as 6, goes far from 1. The decrease
of a between 8y =5 and 6y = 10 is because the equation B(s) = 1 has only
one solution for(®) 6, > 8.3, and two for 6 < 8.3

(3)To be precise, the equation B(s) = 1 has only one solution for 6y > /n!, about 8.3 when n = 20.
Remember that § = A = 1.
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TaBLE 3. ¥ (1) as 6y changes,
LA=38=1

n =20

6o a
10 4.60
5 4.94
2 3.46
0.5 3.07
1/5 3.88

1/10 4.66

4. COMPUTING THE THRESHOLDS
4.1. Exact Thresholds

In this subsection we outline the general method, implicitly suggested by
Berger et al. (1997), to compute exactly r and a.

One needs to compute ¥ (-) = Fofl(l — F1(1)). Since usually closed form
expression for the Bayes factor CDFs F;(-) are not available, one needs to
consider the equation B(x) = z, as a function of z. In general this equation
will have zero, one or two solutions; or even more. Let (x;i,...,x;x) be
the k solutions to the equation. Let x,90 = —oo and x ;41 = +oo. If k
is even: Fi(z) = f;;bl m;(y) dy + ...+ f;@kk“ m;(y) dy, while if k is odd:
Fi(@) = [Z) mi(y) dy +...+ [[5F mi(y) dy.

Now we have an expression for F;(-), but it is unlikely that a closed form
expression will be achieved, and so for the inverse F,-_l('). Thus, ¥ (1) will be
solution to the equation: Fy(x) = 1 — F;(1); which in almost all cases will be
solved numerically.

4.2. Simulated thresholds

Simulation can avoid lots of computation and programming. It is im-
mediate to see that, if (x;,...,x,) is an iid. sample from m;(x), (z; =
B(xy),...,2p = B(xp)) will be an i.i.d. sample from F;(z). One can then use
the empirical distribution F;(z) = %Z l(; <) to estimate F;(z). Let (1) be
the solution to the equation

Fo(z) =1— Fi(1). (13)
By Glivenko-Cantelli, you have ﬁ,-(z) 2 F;(z) in probability. It is easy to use
this result to prove that bliI_P Y(1) = ¥(1). In the same way, if ¥ '(1) is
— 400
solution to the equation:
Fo(1) =1 = Fi(2), (14)
¥ 1(1) gets closer and closer to ¥ ~'(1) as b increases.
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One will almost always be able to sample from m(x) = f(x|6), while
sampling from m(x) in the composite alternative case may be a harder problem.
MCMC methods can be used to get a dependent sample from Fj(-). If the
sample has ergodic properties, convergence in probability will still hold.

It is also possible that the value F;(1) is known. Of course, substituting
the real value for the estimate in the equations (13) and (14) will speed up the
convergence and provide more accurate results. Since in most cases it is enough
to solve equation (13), and get F;(1) by one single numerical integration;
MCMC methods will be rarely needed.

4.2.1 -An example

Let (xq,...,x,) be an ii.d vector with x;|6,0> ~ N(8, 0?), known o.
Suppose H; : 0 # 6y, for some 6.

Let 7,(f) be a conjugate prior, i.e., @ ~ N(6y, £0?), for some & > 0.

Table 4 confronts exact and simulated threshold a (Berger ef al. (1997)
proved in the normal case r is always one) We took b = 100.000, but since
both m(-) and m(-) are normal distributions, getting all eighth thresholds took
less than 10 seconds with a for loop; using R, on a 1Ghz Pentium II.

TABLE 4. ¥ (1) = a for the normal test, composite hypotheses.

né Exact Simulated
1 1.317 1.319
10 2.321 2315
15 2.576 2.575
20 2.768 2.758
25 2.922 2.898
30 3.051 3.035
40 3.260 3.233
50 3.425 3.375

The approximation of the simulation is more than satisfying. Note that
(marginal) probability of the Bayes factor being in the interval between the
exact and simulated threshold will always be negligible.

5. PART II: OPTIMAL SAMPLE SIZE DETERMINATION

In this section, we will show how to choose the sample size for the modified
test of Berger et al. (1994). We follow a technique proposed by De Santis
(2003). For a review of methods, see Adcock (1997) and Weiss (1997).

Along these lines, Verdinelli (1996) and then De Santis (2003) suggest to
use the following method: Let k; and k, be two non negative thresholds, chosen
by the statistician, such that: if B(x) < k; < 1, not only we believe H, is true,
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but also that there is strong data evidence in favor of it; if B(x) > k, > 1,
not only we believe Hy is true, but also that there is strong data evidence in
favor of it. Let p,(ki, k) = Pr(B(x) < ki|H;) * 1} + Pr(B(x) > k| Hy) * 1y
be the marginal probability of observing strong evidence in favor of the true
hypothesis. The analysis follows the following steps:

1. Pre-experimental phase. Fix p € (0, 1), and choose n, such that: n, =
min{n/ p,(ki, k2) > p};

2. Experimental phase. Observe a sample of n, elements.

3. Post-experimental phase. Do the test in this way:

B(x) < kq, reject Hy and report o*(B(x))
{ ki < B(x) < k>, no decision
B(x) > ks, retain Hy and report 8*(B(x)),

where x is the observed sample.

The obvious problem here is the choice of sensible values for k; and k,.
Jeffreys (1961) suggests a possible scale of k; and k, according to the strength
of evidence the researcher wants to see in the results to confirm his decision.
He notes, however, that no universal answer can be given with these criteria.
A formal approach is taken in De Santis (2003), but goes beyond the purposes
of this article.

We now show that one possibility is setting k; = r and k, = a, thus using
the modified test and choosing the optimal sample size for it. In practice,
we choose a value for n so that, with high probability, the Bayesian test is
equivalent to a conditional frequentist test. Apart from overcoming the problem
of choosing the thresholds k; and k,, this has some nice properties. We show
that using these thresholds implies a symmetry between the two hypotheses.
Since we are assuming a 0-1 loss function, this symmetry is sensible from a
decision theory point of view. It is also straightforward to see that the modified
test in (6) is minimax in the class of tests defined by all varying k; and k,.

5.1. Optimal sample size for the modified test

Let p,(a,r) be the pre-experimental probability of making the correct
decision: p,(a,r) = 3 Pr(Do(a; n)|Hy) + 5 Pr(D; (r; n)|Hy), where Dy(a; n) =
{x/ B(x) >a} (Di(r;n)={x/ B(x) <r}), is the subset of the sample space
in which Hj is retained (resp., rejected).

By construction, Pr(D,(r; n)|H,) = Pr(Dy(a; n)|Hy) = p,(a;r), and so

Fi(1) it ¢()=1

puair) = { 1= F() if w() <1, (15
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Note that p,(a;r) in this form is not explicitly dependent on the values
of r and a. This is useful, as in this case r and a change with n. This fact
is also the main difference with the method proposed in De Santis (2003): in
our case, as the thresholds change with n, we can conclude that the sample
size implies the thresholds for testing.

The fact that Pr(Dg(a; n)|Hy) is equal to Pr(Di(r;n)|H;) V n € N is
a key to the minimax optimality stated above, and also implies that there is
symmetry between the hypotheses for n fixed: the pre-experimental probability
of retaining Hy, when it is true is the same as the probability of rejecting H
when it is false.

To summarize, this is the algorithm we are proposing for testing:

1. Pre-experimental Phase.
(a) Choice of the optimal sample size. Fix p € (0, 1), and choose n, such
that: n, = min{n/ p,(a,r) > p}, where p,(a,r) is defined as in (15);
(b) Determination of the thresholds. Compute a and r correspondent to
n=n,.
2. Experimental Phase. Observe a sample of size n,,.
3. Post-experimental Phase. Compute the Bayes factor and do the test:

B(x) <, reject Hy and report a*(B(x))
{ r < B(x) < a, no decision
B(x) > a, retain Hy and report B8*(B(x)).

Note that we expect to end up this algorithm outside the NDR, making the
right decision, in p% of our tests.

We think here that it could be sensible use this method of choice of the
sample size also when doing a full Bayesian test, i.e., when disregarding the
NDR. In this sense, one would choose a sample size so that, with high prob-
ability, the Bayesian test would be equivalent to a conditional frequentist one.

We complete the discussion with some examples showing that in usual
applications the optimal sample size is reasonably small for sensible values of p.

5.2. Optimal Sample Size in Applications
5.2.1 —Normal random sample with known variance

Suppose we are dealing with normal random variables, and that the the
alternative is composite. Suppose(*) the prior under the alternative hypothesis

is such that & ~ N (6, £c0?), with 6, e R and £ > 0. Let A = (6)—6,)/\/Ec2.
Since ¥ (1) > 1, from (15) we have: p,(a;r) = Fi(1).

*)See Berger et al. (1997) for a detailed insight on the normal setting.
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Let uf = 2 & \/"i—;‘(AZ + In(n€ + 1)), then

Fi(l) = <Am_ 5%2+1n(1+n5)>
b (_AYnEFT+ VAT +In(l + 1)
Vn& .

Table 5 shows n,& and associated threshold a for some values of p and A.

The optimal sample size n, is just n, = [”gi-‘ for fixed & # 0. Notice that

these sample sizes are all reasonable, as usually & > 1 (in practice, people tend
to down weight prior information using “flat” priors, with respect to the density
function of one observation, see Kass and Wasserman (1995) for a discussion
on this issue).

(16)

TABLE 5. n,& and associated a, normal random variables with known o.

/ A=0 A=1 A=2

P npé a npé a npé a
0.50 4 1.822 1 1.665 1 1.777
0.75 36 3.183 13 3.152 2 2.306
0.85 138 4214 51 4.204 4 3.036
0.90 376 5.036 138 5.025 10 4.206
0.95 1924 6.433 708 6.430 40 5.990

As we could expect, n, is inversely proportional to &, since as & grows
the prior is less concentrated and so more and more observations are needed
to make a statement on H,.

Figure 5 shows p,(a; r) with respect to n,&, for different values of A. As
one would expect, as A increases the prior distribution is centered farther and
farther from 6,, and so it is easier to discriminate.

0.9
A=2
0.8
0.7
0.6 =0
0.5
20 40 60 80 100

Figure 5. p,(a; r), normal test.
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5.2.2 —Exponential case, simple hypotheses
WLOG we can suppose A = Z—‘l’ > 1. Using (15), (8) and (9); we have:

) 1 —HQCnln(A)/ (L — 1)) if y(1)=>1
paa;r) = { HQmIn() /o — 1) if w(1) <1,
where H(-) is the CDF of a chi-square random variable with 2n d.f.

Table 6 shows 7, for some values of A and p. Note that all optimal sample
sizes are relatively small, thus allowing the researcher to be parsimonious. Note
also that as A gets farther and farther from the value 1, it is easier and easier
to discriminate between the two hypotheses and the optimal sample size is thus
smaller.

TABLE 6. n), for some A.

A p=05 0.75 0.85 0.95
1,25+l 4 43 93 222
1, 5% 2 15 30 70
1,75%! 2 9 17 38
2+l 2 6 11 25
3+l 1 3 5 11

Figure 6 shows p,(a; r) with respect to n.

40 60 80 2 100

0.8 *»=1.25

Figure 6. p, (a; r) for the exponential test, simple hypothese.
5.2.3 —Exponential case, composite alternative

Using (15), it can be shown that:

GG(s1,) +1=GG(s12) if y(1) =1

pala;r) = { H(251200) — H(251160p) if ¥(1) <1,
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where GG(-) is the CDF of a Gamma-Gamma random variable with parameters
(8, A,n) and s,;, i = 1,2, are the solutions of the equation B(s) = 1. Table 7
shows optimal n, for some §, with 6, = 1 and A = §. The sample sizes needed
to have reasonable probabilities of strong and correct evidence are relatively
small and of course increase with p..

TABLE 7. n, for some §, with 0y = 1 and A = 56).

3 p =05 0.75 0.85

1 4 31 120
2/3 3 19 65
172 1 14 51

5.3. Unequal Prior Probabilities of the Two Hypotheses

We will now extend the method of choice of the optimal sample size to
the generalized unified test, i.e., to the case in which the prior probabilities of

the two hypotheses are not equal. Remember that we call n = %, the ratio
0

of the two prior probabilities.
Since
Fo(ay) = max(Fo(n), 1 — nFi(n))
) 1
Fi(ry) = min(F(n), ;[1 — Fo(m),

we have that

Pr(Do(anin)lHo):{ L= FyGn if Fo(n) > 1 —nFi(n)

nFi(n) if Fo(n) <1—nFi(n)

and
I/n[l — Fo(m)] if Fo(n) > 1 —nFi(n)

Fi(n) it Fo(n) <1—nFi(n)

The Pr(Dy(ay; n)|Hy) is always n times Pr(D;(r,; n)|H;). Hence we have the
equality

Pr(Dy(ry; )| Hy) = {

Py Pr(Do(ay; n)|Ho) = puy Pr(Di(ry; n)|Hy).

We no longer have the equality between the probabilities of correct rejection,
but we now have equality between the joint probabilities of an hypothesis being
true and the rejection of the other, after the experiment.

It is straightforward to see that

2pu, Fi(n) it Fo(n) <1—nFi(n)
2pu,[1 — Fo(p)] it Fo(m) > 1 —nFi(n)

Once again, the probability in (17) does not explicitly depend on r, or a,, but
only on n.

pn(rn; an) = { (17)
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What we said about the case in which 7 is equal to 1, easily generalizes
to n # 1. There is only an important feature to comment on: the probability
pn(ry; ay) has an horizontal asymptote at level 2min(py,, py,), and, when the
two probabilities are not equal, it is strictly smaller than 1. Hence, in this
case, the probability of falling in the no decision region does not go to 0 as
n grows. Note that the maximum probability of correct decision that can be
attained can be very low. For instance, if pg, = 0.8, there is no sample size
for which p,(r,; a,) > 0.4, a very small threshold.

Example 2. Consider the data used in Lee and Zelen (2000) regarding clinical
trials from the Eastern Cooperative Oncology Group (ECOG), on various types
of cancer. The data is very general and the observed values x are a standardized
measure of the difference between a control group and a group who took a new
treatment. The parameter 6 measures the general efficiency of the treatment.
Lee and Zelen (2000) assume x is normal with mean 6 and variance o>.

We are testing a null hypothesis that 6 = 0 against a double sided alter-
native.

Lee and Zelen (2000) determine prior information on the basis of 87 clinical
trials, and estimate that 0.28 < py, < 0.32. For the time being, we will assume
pu, = 0.3, and thus n = 0.429. The upper bound for the probability of correct
decision is 0.6. A sensible strategy is to get as close as possible to this upper
bound, with a reasonable sample size.

Lee and Zelen (2000) assume the prior to be normal, with mean 0. We
suggest to take &, the ratio between prior and sample variance, to 1. Following
Kass and Wasserman (1995), this implies that we give to the prior information
the same weight that we give to one observation. Recall that with normal
distributions, ¥ (1) > 1, so we have p,(1; ap9.1) = 0.6F;(0.429).

Table 8 shows the optimal sample sizes for different levels p. Note that the
procedure is not robust with respect to the choice of py,. This is particularly
evident for large values of p, as it is easily seen in figure 7. Note that we
need few observations to get to a level p = 0.5, while when py, = 0.3, for
instance, we need 1263 — 761 = 502 more observations to have an increase of
1% in the probability of correct decision, from 0.55 to 0.56.

TABLE 8. ny, various p.

0 pH, =0.32 pr, = 0.30 pH, =0.28
0.30 7 9 12
0.40 19 28 43
0.50 76 152 440
0.55 220 761 23895
0.56 291 1263 +00

0.60 1427 +00
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20 40 60 80 100

Figure 7. p,(a1,03/0.7; 1), various pp,
5.4. An alternative procedure for the choice of sample size

Dass and Berger (1999) propose to fix n such that

{ Pr(B*(B(x)) < aglHy) > po
Pr(a*(B(x)) < ai|Hy) > p1,

for some o, @, po and p;. The difference with the previous method is that
[1y and I1; don’t come into the analysis, and that the two hypotheses can have
very different weight. In fact, with probability greater than or equal to py we
expect to retain Hy with error probability 8*(B(x)) < ay when Hj is true; and
to reject Hy with error probability a*(B(x)) < a1 p1% of the times when H is
false. It is then possible to choose one between py or p; so that the behavior
of the Bayes factor under the corresponding hypothesis is not contributing to
the determination of the sample size. To avoid this, Dass and Berger (1999)
recommend to fix «; = g and py = p;.

Note that this procedure is applicable to the modified test only if the
samples in the NDR are not admissible to the system (18), i.e., they are not
such that 8*(B(x)) < agp or a*(B(x)) < «y. To clarify, supposing ¥ (1) > 1,
it makes no sense to have 1/(a + 1) < B*(B(x)) < ay. This in fact maps to
a;' —1 < B(x) < a, which means we are allowing to end up in the NDR.

It is straightforward then to see that the additional constraints oy < 1/(a+1)
and oy > r/(r + 1) are needed. If ¢p = 1/(a+ 1) and «; = r/(r + 1), the
optimal sample size is the same as in the previous subsection.

This approach suggests how to overcome a possible drawback of the pro-
cedure proposed in the previous subsection. In fact, one between a and r
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is always equal to 1. The idea is that k; and k, are bounds for “strong”,
or at least “moderate”, evidence expressed by the Bayes factor against one
of the two hypotheses. In this sense, it may be sensible to request that k;
and k, must be different than 1. A possible solution is to fix oy = o) =
min(r/(r + 1), 1/(1 4+ a)). The procedure will be more conservative (the opti-
mal sample sizes will be sensibly higher), but, with high probability, we will
end up outside the NDR and with strong (moderate) evidence in favor of the
true hypothesis. With the setting of the previous section, this is equivalent to
fixing Do(max(a, 1/r); n) and D;(min(r, 1/a); n). It is straightforward to see
that p,(max(a, 1/r); min(r, 1/a)) is equal to:

LIRS if y(1)>1

pp(max(a, 1/r); min(r, 1/a)) = | /R0 s <1 ,
2
so the optimal sample size is n = argmin(n € IN/ p,(max(a,1/r);
min(r, 1/a)) > «).
It is immediate to see that p,(max(a, 1/r); min(r, 1/a)) < p,(a;r), Vn €
IN, so bigger values of the optimal sample size will be given.

Example 3. [Fisher and Van Belle, (1993)] The data is taken from Fisher and
Van Belle (1993), and is about the weight at birth of n = 15 babies born in
King County in 1997, and dead by SIDS (sudden death syndrome). Suppose
the weight at birth is distributed like a normal with ¢ = 800g. The average
weight of all babies born in King County in 1977 was 3300g. Hence, we are
testing to see if Hy : 0 = 3300. Berger ef al. (1997) suggest to pick A =0
and £ = 2. They explain this choice by the fact that the prior N(0,20?)
is approximately a Cauchy(0, %), which is the reference prior suggested by
Jeffreys (1961). From Table 4 we see that ¢ = 3.051. Since the sample
average is ¥ = 3199.8, and so u = (3199.8 — 3300)+/15/800 = —0.485; and
B(—0.485) = 4.968 > 3.051, we retain the null hypothesis and conclude that
there is no relationship between sudden death and weight at birth. The error
probability is f*(B(x)) = 0.168.

We have p;s(1,3.051) = 0.7351. To have a probability of strong and cor-
rect evidence higher than 0.75, we would have needed 36/2 = 18 observations,
only 3 more. For a level of 0.85 the optimal sample size is 69, with a = 4.214.

The alternative approach yields: p;5(3.051;3.0517") = 0.6882, sensibly
lower. For a level of 0.75 you need n = 30, since p3((3.563;3.5637!) = 0.754.

In conclusion, the modified test proposed by Berger ef al. (1994) can be
easily used if computing the bounds of the NDR via simulation. Reporting
the thresholds together with the Bayes factor can say whether the procedure
is equivalent to the application of frequentist methods. On the other side, this
method can suggest the optimal sample size to choose for testing.
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APPENDIX

Proof of Theorem 1. Let 1/ = v, and assume A > 1. We have that

21 1n (%) /(A —1)=2In("b)/(v — 1), (18)

Since, o
2x1n (b) /(O — 1) =2In(1/v"b)/(1 — v)
=2In(w"b)/(v — 1)

In the same way it is possible to prove that

21n <%> /(A —1)=2vIn(w"b)/(v — 1) 19)

Hence,

L3 — 3 exp {_(A — 1)H*1(1 _ H(z:lnlx» } )

2\
=v" exp{(u —HH™! <1 —H (2‘r)w_lnlv>> /2} =

Moreover, applying (18) again,

Fo(l,x)=1—HQ@AIn(A")/(A — 1))l = HRIn(V")/(v — 1)) =1 — Fi(1,v).
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