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Abstract
We introduce quantile ratio regression. Our proposed model assumes that the ratio of two arbitrary quantiles of a continuous
response distribution is a function of a linear predictor. Thanks to basic quantile properties, estimation can be carried out on
the scale of either the response or the link function. The advantage of using the latter becomes tangible when implementing
fast optimizers for linear regression in the presence of large datasets. We show the theoretical properties of the estimator and
derive an efficient method to obtain standard errors. The good performance and merit of our methods are illustrated by means
of a simulation study and a real data analysis; where we investigate income inequality in the European Union (EU) using data
from a sample of about two million households. We find a significant association between inequality, as measured by quantile
ratios, and certain macroeconomic indicators; and we identify countries with outlying income inequality relative to the rest
of the EU. An R implementation of the proposed methods is freely available.
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1 Introduction

The ratio of quantiles of a distribution is an important mea-
sure of distributional features that finds application in several
fields, most notably for the study of economic inequali-
ties. Two popular measures are the ratio of the 80th and
20th income percentiles and the ratio of the 90th and 40th
income percentiles. See also Cowell (2011), Chancel and
Piketty (2021) and Chancel et al. (2022) for other quantile
ratios of interest. The quartile ratio is found in biomedical
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applications (Feinberg et al. 2015), and the decile ratios
in cost-effectiveness analysis (Kumar et al. 2018). Other
applications of quantile ratios range from environmental
(Rustomji et al. 2009) to ceramic materials studies (Das and
Maiti 1999). To preempt any misunderstanding, we remark
that this article does not dealwith quantile share ratios (Beach
and Davidson 1983; Langel and Tillé 2011). One such a ratio
is the Palma ratio, that is, the ratio of the total income in the
hands of the top 10% earners to that of the lowest 40%. As
compared to quantile share ratios, quantile ratios are clearly
more robust to outliers and, in our opinion, more readily
interpretable.

Despite the widespread interest, quantile ratios have been
used mostly as descriptive statistics. Few works that deal
explicitlywith inferentialmethods for quantile ratios are con-
fined to the unconditional (as opposed to conditional) case.
Prendergast and Staudte (2017) developed distribution-free
asymptotic confidence intervals for unconditional ratios. In
a related work, Prendergast and Staudte (2018) built upon
(unconditional) quantile ratios to derive an inequality index
that is akin to the Gini coefficient. A general and elegant
non-parametricmethod to studywage inequality bymeans of
an Oaxaca-Blinder-type decomposition is proposed in Firpo
et al. (2018). On the other hand, a distribution-free method
to make inference on conditional quantile ratios seems to be
lacking, despite it being potentially useful in many applica-
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tions (particularly for the study of economic inequalities); it
is the objective of the present work to make such a proposal.

In general, the use of nonparametric bootstrap is quite
common in the literature about inequality indices (ratios
of income shares, Gini and Theil coefficients, and so on)
(Biewen 2002; Buhmann et al. 1988). As far as conditional
quantile ratios go, a poor man’s solution for parametric esti-
mation would be to fit a quantile regression model on the
log-transformed outcome for the two quantile levels of inter-
est and then take their difference (see Sect. 2.1 for more
details). The calculation of standard errors would easily fol-
low from well-established results for regression quantiles
(Koenker and Bassett 1978a). However, this strategy would
bring little flexibility to model’s specification and, perhaps
more importantly, it would always result in a loss of effi-
ciency. The model would in general be misspecified and
possibly therefore would not provide a good fit (Feng et al.
2023). Quantile crossing might also arise.

Another possible approach to the modeling of inequal-
ity would be a fully parametric one, say via (Generalized)
Linear Models (GLMs). In one specification, given a distri-
bution from the exponential family (e.g., gamma or normal),
the expectation of the outcome is linked to the linear predic-
tor. Conditional quantiles are subsequently estimated from
the fitted GLM and their ratios are regressed against the
same linear predictor upon a suitable transformation. In
this modeling strategy, which we call GLM-based, bias and
loss of efficiency may result from an incorrect distributional
assumption. In a different specification, when some form
of clustering is present (e.g., spatial), a naïve model would
regress sample quantiles on aggregated covariates, poten-
tially resulting in ecological bias. Related to the modeling
of inequality via mean regression, see Olkin and Yitzhaki
(1992).

In the present paper, we propose a distribution-free model
for conditional quantile ratios and develop inferential meth-
ods in a parametric setting. Interpretation of the parameters
is simple, while formal hypothesis testing is carried out with
classical Wald-type tests. Our work is connected to infer-
ence for L-statistics, defined as linear combinations of order
statistics (e.g., see Koenker 2005). Indeed, robust measures
of location, quantile differences for assessing variability
(e.g., interquartile range) (Goldman and Kaplan 2018) as
well as other quantile-based measures of shape (Groeneveld
and Meeden 1984; Groeneveld 1998; Jones et al. 2011) can
ideally be linked to quantile ratios upon a logarithmic trans-
formation. We also mention the studies of Dominici et al.
(2005) and Cheng and Wu (2010) as unrelated to ours, since
they concern the ratio of the same quantile in two different
populations. Naturally, quantile regression is a very active
area of research in general. We refer the interested reader
to some recent contributions (Sherwood and Li 2022; Far-

comeni et al. 2022; Merlo et al. 2022; Redivo et al. 2023)
and reviews (Koenker 2017; Waldmann 2018).

The present work is motivated by an original application
to economic (income) inequality in Europe. The analysis
is based on about two million households sampled in sev-
eral cross-sectional waves of the European Union Survey
on Income and Living Conditions (EU-SILC) database. We
looked at inequality in 19 countries and how inequality has
changed over a time period spanning the years before and
after theGlobal FinancialCrisis.We identifiedoutlying coun-
tries that experienced more economic inequality than the
rest of the European Union. We also investigated the role of
macroeconomic indicators in explaining differences between
countries. This is thefirst study to allow inferential statements
about the (adjusted) association between these indicators and
household-level income inequality.

In the following, we give a formal definition of the Quan-
tile Ratio Regression (QRR) model (Sect. 2.1) and then
propose an estimation procedure to fit QRR (Sect. 2.2), along
with a scalable algorithm (Sect. 2.3); we derive standard
errors for the parameter estimates (Sect. 2.4);we establish the
theoretical properties of ourmethods (Sect. 3); we investigate
the performance and behaviour of the proposed procedure via
a simulation study (Sect. 4) and an analysis of the EU-SILC
data (Sect. 5); and we conclude with final remarks (Sect. 6).

An R implementation of QRR estimation and related
methods is freely available in the Qtools package (Geraci
2016).Abrief (but exhaustive) tutorial is given in “Appendix”.

2 Quantile ratio regression

2.1 Themodel

Let Y denote an absolutely continuous and strictly posi-
tive randomvariablewith conditional cumulative distribution
function (CDF) FY (y|x) = Pr(Y ≤ y |x), where x is a p-
dimensional vector of covariates. Let

HY (τ |x) ≡ F−1
Y (τ |x) (1)

be the corresponding conditional quantile function. In classi-
cal quantile regression, the aim is to find a satisfactory model
for H as a function of the covariates x for some 0 < τ < 1.
Here our interest lies in the ratio of two conditional quan-
tiles at some fixed levels 0 < τ2 < τ1 < 1, with the
assumption that HY (τ1|x)/HY (τ2|x) > 1. We also assume
that, for an appropriate known and monotone link function
g : (1,∞) → R, such a ratio is a linear function of the
covariates and a parameter β, namely

g

{
HY (τ1|x)

HY (τ2|x)

}
= x�β. (2)
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Though different choices for g are possible, our preference in
this article is for g(u) = log(u−1), which corresponds to an
inverse logit transform since±logit(1/u) = ± log(1/u/(1−
1/u)) = ± log(1/(u−1)). Not only does this transformation
ensure that there is no quantile crossing between τ2 and τ1,
but it also allows one to interpret each element of the vector β
as an adjusted per unit log fold increase in the quantile ratio.
We stress that we do not make any parametric assumption
on the distribution of Y and that the model assumptions are
local, namely, they involve only the specific quantile ratio
but leave unspecified the rest of the conditional CDF.

We note that model (2) entails the following:

HY (τ1|x) = HY (τ2|x) · g−1(x�β),

HY (τ2|x) = HY (τ1|x) · {g−1(x�β)}−1.
(3)

More specifically, if g(u) = log(u − 1), then

HY (τ1|x) = HY (τ2|x) · {1 + exp(x�β)}

and

HY (τ2|x) = HY (τ1|x) · {1 + exp(x�β)}−1

are two nonlinear conditional quantile equations (Koenker
and Park 1996) that share the same parameter β.

To appreciate how our proposal differs from a crude
approach where the numerator and denominator are obtained
from a common ‘global’ model for the conditional quantile
function (1), it is perhaps most natural to consider an expo-
nential model of the type HY (τ |x) = exp{x�γ (τ )}, in which
case the transformation equivariance property of quantiles
implies that

log

{
HY (τ1|x)

HY (τ2|x)

}
= Hlog(Y )(τ1|x) − Hlog(Y )(τ2|x) = x�β̃,

where β̃ = γ (τ1)−γ (τ2) is the parameter of interest. Hence,
it would be extremely easy to estimate β̃ by fitting the same
model on log Y for τ1 and τ2 using standard estimation rou-
tines for linear conditional quantiles. However, this model
entails twice as many parameters as model (2). Standard
errors of the final parameters would invariably be larger than
those obtained with our proposal. A smaller issue with this
crude approach is that it does not guarantee monotonicity of
the quantiles. Should quantile crossing arise, it would need
to be addressed using ad hoc solutions (e.g., He 1997; Cher-
nozhukov et al. 2010) that may have limitations in terms of
scope, and induce further bias.

2.2 Estimation

Let y = (y1, . . . , yn)� denote a vector of n independent
observations, associated with an n × p matrix of covariates
x whose generic i th row vector is xi , i = 1, . . . , n. Also,
define ξ j ≡ HY (τ j |x), j = 1, 2, the true conditional quan-
tile of Y and ξ̂ j its corresponding prediction. The parameter
β, common to the two equations in (3), can be estimated
by either HZ (τ1|x) = g−1{x�γ (τ1)}, where Z = Y/ξ̂2,
or HZ (τ2|x) = {g−1(x�γ (τ2))}−1, where Z = Y/ξ̂1.
Say we use the former. At first, the predictions ξ̂2 can be
obtained by means of an appropriate method for estimating
the conditional quantile function (1) such as linear, non-
parametric (Yu and Jones 1998; Racine and Li 2017), or
transformation-based (Geraci and Jones 2015) regression.
In our experience (see Sect. 4) a linear model provides a
satisfactory initial value ξ̂2 in the sense that the resulting
estimate γ̂ (τ1) from the first model is generally a station-
ary point for the second model (see further below). If a
refinement is needed, i.e., if γ̂ (τ1) is a not a solution for
HZ (τ2|x), one could fit the latter with Z = Y/ξ̂1 where
ξ̂1 = g−1{x�γ̂ (τ1)} · ξ̂2 is obtained from the first model.
The new predictions ξ̂2 = {g−1(x�γ̂ (τ2))}−1 · ξ̂1 are subse-
quently fed into the first model and a new estimate γ̂ (τ1) is
obtained. A single refinement step is usually sufficient, when
needed.

We now illustrate why the solution γ̂ (τ1) is, in gen-
eral, a stationary point for the fitting of HZ (τ2|x) =
{g−1(x�γ (τ2))}−1. We consider a nonlinear g since not
only is it more relevant to our discussion but also because
the demonstration is trivial when g is linear. We first
need to briefly expound the nonlinear estimation algo-
rithm of Koenker and Park (1996), as adapted in Koenker
(2005, p. 211) and implemented in the R function nlrq of
the quantreg package (Koenker 2023). Consider the prob-
lem

γ̂ n(τ2) = argmin
γ∈�

n∑
i=1

ρτ2(ri (γ )), (4)

where � ⊂ R
p is compact, ρτ (r) = r(τ − I (r < 0)),

ri (γ ) = zi − {g−1(x�
i γ )}−1 and zi = yi/ξ̂i,1. The solution

(4) is obtained by solving, with respect to δγ , a sequence of
locally linearized problems of the type r(γ ) = j(γ )δγ + ε,
where j(γ ) = ∂r(γ )/∂γ . The expression for the step δγ

is given in Koenker (2005). Then, the algorithm updates γ

with γ + λδγ , where the step length λ ∈ [0, 1] minimizes∑n
i=1 ρτ2

(
ri

(
γ + λδγ

))
. The algorithm proceeds until con-

vergence (see Koenker and Park 1996, for the conditions and
criteria of convergence).

Now, given the estimate γ̂ (τ1) and the predictions ξ̂i,1 =
g−1{x�

i γ̂ (τ1)}·ξ̂i,2 obtained fromHZ (τ1|x) = g−1{x�γ (τ1)},
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at the very first iteration of the algorithm to solve the mini-
mization problem in (4), we have

n∑
i=1

ρτ2

(
ri

(
γ̂ (τ1) + λδγ

))

=
n∑

i=1

ρτ2

(
yi/ξ̂i,1 − 1/g−1{x�

i γ̂ (τ1) + λx�
i δγ }

)

=
n∑

i=1

ρτ2

(
yi/ξ̂i,2

g−1{x�
i γ̂ (τ1)}

− 1

g−1{x�
i γ̂ (τ1) + λx�

i δγ }

)
.

(5)

Note that HY/ξ̂2
(τ2|x) = ξ2/ξ̂2, hence the empiricalmarginal

quantile τ2 of Y/ξ̂2 is, in general, equal to 1. This implies that
(5) is minimized only when λ = 0 since

n∑
i=1

ρτ2

(
yi/ξ̂i,2

g−1{x�
i γ̂ (τ1)}

− 1

g−1{x�
i γ̂ (τ1)}

)

∝
n∑

i=1

ρτ2

(
yi/ξ̂i,2 − 1

)
,

in which case the algorithm stops immediately and returns
γ̂ (τ2) = γ̂ (τ1). Of course, if the initial estimate ξ̂2 does not
yield ĤY/ξ̂2

(τ2) = 1, the estimation will need to be refined
as discussed above.

As far as asymptotics are concerned, for fixed ξ j , j = 1, 2,
the estimator γ̂ n(τ j ), j = 2, 1, respectively, is consistent and
asymptotically normal (Koenker 2005). With slight abuse of
notation, let h = g−1 whenever h refers to an expression
involving τ = τ1 and h = 1/g−1 when it involves τ = τ2.
Thanks to the Bahadur representation

√
n

(
γ̂ n(τ j ) − γ 0(τ j )

) = D−1
1

1√
n

n∑
i=1

ḣiψτ j

(
ri (τ j )

)

+op(1), (6)

where D1 = n−1 ∑
fi

(
ξi, j

)
ḣi ḣ�

i , fi is the density of
Zi conditional on xi and ξi, j = HZi (τ j |xi ), ḣi =
∂h

(
x�
i γ

)
/ ∂γ |γ=γ 0

, ri (τ j ) = yi/ξ̂i, j − h
(
x�
i γ 0(τ )

)
and

ψτ (r) = τ − I (r < 0).

2.3 A scalable estimation strategy

Given our choice for g, the estimation procedure intro-
duced in the previous section requires solving a nonlinear
problem, whose computation may represent a bottleneck. In
order to scale inference to millions of observations we can
linearize the problem by applying the equivariance prop-
erty of quantiles. This is convenient due to the existence
of fast computation algorithms for linear problems such as

Frisch–Newton-type algorithms (Koenker 2005) and algo-
rithmsbasedon smoothing (e.g., Bottai et al. 2015; Fernandes
et al. 2021; He et al. 2023). In our real data example, which
involves a sample of almost two million, we used the algo-
rithm proposed by He et al. (2023).

For the linearly transformed estimation problem, we pro-
pose an estimation algorithm based on fitting the linear
quantile model Hg(Z)(τ1|x) = x�γ (τ1), where Z = Y/ξ̂2

given the current value of ξ̂2, to obtain an estimate γ̂ (τ1) and
predictions ξ̂1 = g−1{x�γ̂ (τ1)} · ξ̂2. As with the estimation
procedure inSect. 2.2, one should check (andpossibly, refine)
the starting solution by fitting the linear quantile model
Hg(Z)(1− τ2|x) = x�γ (1− τ2), where Z = ξ̂1/Y given the
current value of ξ̂1, with estimates γ̂ (1− τ2) and predictions
ξ̂2 = {g−1(x�γ̂ (1 − τ2))}−1 · ξ̂1. For the latter estimation
we have used the property 1/HY (τ ) = H1/Y (1 − τ) for a
positive, continuous Y . Note that existence of the estimators
is not guaranteed as it could happen that Z ≤ 1. Luckily,
population quantiles are invariant to censoring from below
up to the quantile of interest. Therefore we can censor obser-
vations whenever Y/ξ̂2 ≤ 1 and ξ̂1/Y ≤ 1. An implicit
assumption here is that the (population) quantiles at τ1 and
τ2 are sufficiently separated, which is the rule in empirical
applications.

The advantage of this approximate estimation resides in
the fact that, rather than (4), we now deal with

γ̂ n(τ ) = arg min
γ∈Rp

n∑
i=1

ρτ {g(zi ) − x�γ }, (7)

where zi = yi/ξ̂i,2 for τ = τ1 or zi = ξ̂i,1/yi for
τ = 1 − τ2. Solving (7) can be accomplished by means
of fast interior point algorithms. When this is computa-
tionally prohibitive, an alternative route is smoothing the
loss function ρτ to achieve differentiability and thus apply
gradient-based methods. For example, He et al. (2023) use
convolution smoothing, which, among other things, has the
advantage of yielding a strongly convex function (as opposed
to other smoothing techniques such as that proposed by, e.g.,
Horowitz 1998).

If common regularity conditions for the linear quantile
model hold (e.g., see Koenker 2005, p. 120), then

√
n{γ̂ n(τ1) − γ 0(τ1)} d→ N (0,�1), (8)

where �1 = τ1(1 − τ1)D
−1
1 D0D

−1
1 , D0 = limn→∞ n−1∑

xi x�
i ,

D1 = limn→∞ n−1 ∑
fi

(
ξi,1

)
xi x�

i , fi is the density of Zi

conditional on xi and ξi,1 = HZi (τ1|xi ), with Zi = Yi/ξ̂i,2.
Similarly, for γ̂ (1 − τ2) we have

√
n{γ̂ n(1 − τ2) − γ 0(1 − τ2)} d→ N (0,�2), (9)
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where �2 = τ2(1 − τ2)D
−1
1 D0D

−1
1 , D0 = limn→∞ n−1∑

xi x�
i ,

D1 = limn→∞ n−1 ∑
fi

(
ξi,2

)
xi x�

i , fi is the density of Zi

conditional on xi and ξi,2 = HZi (1 − τ2|xi ), with Zi =
ξ̂i,1/Yi .

2.4 Standard errors

Standard error estimation can be carried out by means of an
ordinary xy-pair bootstrap, a method we investigated in the
simulation study of Sect. 4 and which proved to work well
even at smaller sample sizes. Alternatives include smoother
approaches, like the Bayesian bootstrap (e.g., Hahn 1997).
However, bootstrap may not be feasible when the sample
size is in the order of the hundreds of thousands or more. We
derive a method for direct estimation of the standard errors
that scaleswell and has a satisfactory performance, especially
at larger sample sizes, as illustrated in Sect. 4.

Starting from the linearized version of our algorithm
(Sect. 2.3), we smooth the objective functions through an
appropriate kernel so as to make them differentiable and,
ultimately, lay the groundwork for scalability. Here we show
expressions based on a Gaussian kernel, though in principle
other kernels can be used. Conditionally on ξ̂2, we have that
the gradient of the smoothed objective function is given by

∂

∂γ
ρ(s)

τ1
(Z − x�γ )

= x��

(
x�γ (τ1) − log(Y/ξ̂2 − 1)

b

)
, (10)

where � denotes the CDF of the standard normal and b is a
smoothing parameter (or bandwidth). Analogously, the gra-
dient of the smoothed objective function conditionally on ξ̂1
is given by

∂

∂γ
ρ

(s)
1−τ2

(Z − x�γ )

= x��

(
x�γ (1 − τ2) − log(ξ̂1/Y − 1)

b

)
. (11)

The fact that γ̂ is a stationary point for both equations
allows us to approximate the smoothed gradient as the sum
of (10) and (11). The information matrix is then obtained
through numerical differentiation of this approximated p-
dimensional gradient, which is rather quick. Standard errors
are obtained as the square root of the diagonal elements of
its inverse. As for the bandwidth, in our implementation we
set b = ((log(n) + p)/n)0.4, which minimizes the Gaus-
sian approximation error at each step according to He et al.
(2023).

3 Theoretical properties

In this sectionwe showconsistency and asymptotic normality
of the estimator. With the same abuse of notation as before,
we let h = g−1 whenever h refers to an expression involving
τ = τ1 and h = 1/g−1 when it involves τ = τ2. Also, let
X denote the design matrix for all observations. For reasons
of space we restrict our theoretical results to the nonlinear
algorithm in Sect. 2.2, where the linear approximation with
convolution smoothing in Sect. 2.3 can be accommodated
with some slight changes.

Theorem 1 Assume the usual regularity conditions for cross-
sectional quantile regression models, and that X�X/n is
positive definite and converges to a positive definitematrixC .
Assume initial predictions are consistent. Then, γ̂ converges
in probability to β.

Proof By definition,

β = lim
n

argmin
γ

∑n
i=1 ρτ2

(
yi

ξi,1
− h(xi , γ )

)
n

= lim
n

argmin
γ

∑n
i=1 ρτ1

(
yi

ξi,2
− h(xi , γ )

)
n

. (12)

Similarly, for all n,

γ̂ = argmin
γ

∑n
i=1 ρτ2

(
yi

ξ̂i,1
− h(xi , γ )

)
n

= argmin
γ

∑n
i=1 ρτ1

(
yi

ξ̂i,2
− h(xi , γ )

)
n

. (13)

To see consistency, note that the regularity conditions

imply that n−1 ∑n
i=1 ρτ2

(
yi

ξ̂i,1
− h(xi , γ̂ )

)
uniformly con-

verges in probability to a finite constant. The uniform
convergence theorem then guarantees that there exists a vec-
tor η such that γ̂ converges in probability to η.

Suppose now that η �= β. This would imply that ∃ ñ such
that for n > ñ

n∑
i=1

ρτ2

(
yi

ξ̂i,1
− h(xi ,β)

)
>

n∑
i=1

ρτ2

(
yi

ξ̂i,1
− h(xi , γ̂ )

)
,

which is not possible due to consistency of initial predictions,
(12) and (13). Therefore, η = β, which completes the proof.

�
Theorem 2 Assume the usual regularity conditions for quan-
tile regression models, and that X�X/n is positive definite
and converges to a positive definite matrix C . Assume initial
predictions are consistent. Then, there exists a positive defi-
nite matrix � such that

√
n(γ̂ −β) converges in distribution

123



   94 Page 6 of 15 Statistics and Computing            (2024) 34:94 

to a zero-centered multivariate Gaussian random variable
with covariance matrix �.

Proof The statement follows from the fact that, for j, k =
1, 2 and j �= k, (γ̂ (τ j ), ξ̂i, j ) are asymptotically jointly nor-
mal conditional on ξ̂i,k , as argued in the previous section.
Equality of γ̂ (τ1) and γ̂ (τ2) guarantees that γ̂ is asymptoti-
cally normal also unconditionally. �

As a general comment, it can be seen that theoretical
properties of quantile ratio regression, including the rate of
convergence, are very similar to those of classical quantile
regression.

4 Simulation study

We conducted a simulation study to investigate the finite-
sample properties of our methods. We considered the
conditional quantile ratio model (2) with two response dis-
tributions: Weibull and lognormal. The former has quantile
function HY (τ ) = σ {− log(1−τ)}1/α forY ≥ 0,σ > 0,α >

0, while the latter HY (τ ) = exp
{
μ + σ�−1(τ )

}
for Y ≥ 0,

μ ∈ R, σ > 0. Each Weibull response Yi , i = 1, . . . , n,
was generated conditionally on ηi = β0 +β1xi +β2wi , with
xi ∼ Unif(−0.5, 0.5) and wi ∼ Bin(1, 0.4), by sampling a
distribution with shape parameter αi satisfying

HYi (τ1)

HYi (τ2)
=

{
log(1 − τ1)

log(1 − τ2)

}1/αi
= 1 + exp(ηi );

while σ was set equal to 1. Analogously, the i th lognormal
response was obtained with a value of σi so as to satisfy

HYi (τ1)

HYi (τ2)
= exp

{
σi

(
�−1(τ1) − �−1(τ2)

)}
= 1 + exp(ηi ),

with μ set equal to 0. Hence, since αi and σi depend on
ηi , the location, scale and shape of either distribution are
affected by the covariates xi . We used two sets of val-
ues for the regression coefficients, β = (0.5, 0, 0)� and
β = (0.5,−0.5, 0.5)�, four quantile ratios, 0.8 : 0.2,
0.9 : 0.1, 0.9 : 0.4 and 0.99 : 0.5, and three sample sizes,
n ∈ {100, 1000, 10000}, for a total of 24 combinations for
each distribution. Both the Weibull and lognormal distribu-
tion are right-skewed for any of the values ηi resulting from
these settings. Each combination was replicated 500 times.

The estimation algorithms discussed in Sects. 2.2 and 2.3
were assessed in terms of bias andmean squared error (MSE)
of β̂, while the performance of the approximate standard
error estimation approach of Sect. 2.4 was evaluated by cal-
culating the ratio between the average estimated standard
errors and the standard deviation of the estimates (empiri-
cal standard errors), along with the observed coverage of the

corresponding 95%confidence intervals. For comparison,we
also estimated standard errors bymeans of ordinary bootstrap
with 200 replications. Given the large number of results, we
report detailed results obtained from the linearized algorithm
in Sect. 2.3 for the quantile ratios 0.8 :0.2 and 0.9 :0.4 only,
and briefly summarize the others.

Due to lack of direct competitors to our proposal, we con-
sidered two parametric alternatives as briefly introduced in
Sect. 1, namely (i) a GLM-based estimation and (ii) a Naïve
linear regression model applied to artificially grouped data.
In the former case (i), the conditional quantiles ĤMLE (τ1)

and ĤMLE (τ2) were obtained from the inversion of F̂MLE ,
a parametric distribution in the GLM family fitted by
means of maximum likelihood. Then log(R̂MLE −1), where
R̂MLE = ĤMLE (τ1)/ĤMLE (τ2), was regressed on x to esti-
mate βMLE , which can be considered a parametric estimate
of β. In our simulation study, we used gamma and normal
GLMs. In the second case (ii), by partitioning the observa-
tions into 20 groups of size n/20, each with index set Gg ,
g = 1, . . . , 20, the sample was aggregated so as to regress
log(R̂g−1) on x̄g , where R̂g = Ĥg(τ1)/Ĥg(τ2) is the ratio of
the sample quantiles for group g and x̄g = 20

∑
i∈Gg

xi/n.
An ecological regression of this sort is clearly bound to be
unsatisfactory, but it is arguably a ‘quick and dirty’ expedient
one could put together to obtain an indirect estimate of β, say
βg . Note anyway that our real data example in Sect. 5 does
have a grouping structure.

As shown in Tables 1 and 2, the bias andMSE of the QRR
estimator under the Weibull distribution were reasonably
small at the smallest sample size and practically null at higher
sample sizes in all considered scenarios. Approximate-to-
empirical average standard error ratios were also close to 1
(Table 3), with observed confidence interval coverage close
to the nominal 95% or slightly conservative at most for the
0.8:0.2 quantile ratio. Tables 4, 5 and 6 confirm the good
behaviour of QRR also under the lognormal distribution,
with the exception of the 0.9:0.4 quantile ratio. For this sce-
nario, the approximate standard errors were slightly below
the empirical standard errors and, consequently, observed
confidence interval coverage below the nominal level. This
lesser performance at this quantile ratio is most likely due to
the markedly lower density that the lognormal distribution
has at its 90th percentile for a given ηi , compared to the den-
sity of the Weibull at its 90th percentile for the same value
of ηi . On the other hand, the bootstrap standard errors were
accurate estimates of the empirical standard errors, consis-
tently under both distributions.

The results (not shown) for the quantile ratios 0.9 : 0.1
and 0.99 : 0.5 were in line with those for the other quantile
ratios in terms of bias and MSE. However, the performance
of the approximate estimation of the standard errors tended
to deteriorate especially in the most extreme case 0.99 :0.5.
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Table 1 Weibull—Bias for crude generalized linear model (gamma, GLMg, and normal, GLMn), naïve linear regression (LM), and quantile ratio
regression (QRR)

Quantile ratio = 0.8 : 0.2
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 −0.01 −0.06 −0.53 −0.02 −0.00 −0.00 −0.02 0.01 0.00 0.00 −0.04 −0.02

1000 0.01 −0.07 −0.03 −0.00 0.00 0.00 0.10 −0.01 0.00 0.00 −0.06 −0.01

10,000 0.02 −0.07 −0.00 −0.00 0.00 −0.00 −0.07 −0.00 0.00 0.00 −0.01 −0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.20 0.21 −0.53 −0.03 0.50 0.51 0.18 0.08 −0.50 −0.55 −0.09 −0.00

1000 0.23 0.19 −0.10 −0.00 0.50 0.54 −0.02 0.00 −0.50 −0.54 0.08 −0.01

10,000 0.24 0.20 −0.02 0.00 0.50 0.54 −0.09 −0.00 −0.50 −0.54 0.01 0.00

Quantile ratio = 0.9 : 0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.05 −0.31 −0.52 −0.01 −0.00 0.02 0.01 −0.03 −0.00 0.01 −0.08 −0.04

1000 0.09 −0.30 −0.08 −0.00 −0.00 0.01 −0.04 −0.00 −0.00 −0.00 0.04 0.00

10,000 0.09 −0.30 0.01 0.00 0.00 −0.00 0.06 −0.00 0.00 −0.00 −0.03 −0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.25 −0.11 −0.54 −0.02 0.50 0.56 −0.00 −0.02 −0.50 −0.55 −0.09 −0.04

1000 0.30 −0.09 −0.07 0.00 0.50 0.57 0.01 −0.00 −0.50 −0.58 −0.03 −0.00

10,000 0.30 −0.09 −0.02 0.00 0.50 0.57 0.02 0.00 −0.50 −0.57 −0.01 −0.00

Table 2 Weibull—Mean squared error for crude generalized linear model (gamma, GLMg, and normal, GLMn), naïve linear regression (LM), and
quantile ratio regression (QRR)

Quantile ratio = 0.8 : 0.2
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.02 0.02 0.40 0.06 0.00 0.11 2.07 0.41 0.00 0.04 0.61 0.14

1000 0.00 0.01 0.13 0.01 0.00 0.01 2.35 0.04 0.00 0.00 0.81 0.01

10,000 0.00 0.01 0.13 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.83 0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.06 0.10 0.41 0.06 0.25 0.50 1.81 0.46 0.25 0.39 0.66 0.17

1000 0.06 0.04 0.17 0.01 0.25 0.31 2.31 0.04 0.25 0.29 0.96 0.01

10,000 0.06 0.04 0.15 0.00 0.25 0.29 2.88 0.00 0.25 0.29 0.93 0.00

Quantile ratio = 0.9 : 0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.02 0.11 0.42 0.06 0.00 0.08 2.07 0.43 0.00 0.03 0.71 0.16

1000 0.01 0.09 0.14 0.01 0.00 0.01 2.42 0.04 0.00 0.00 0.85 0.01
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Table 2 continued

Quantile ratio = 0.9 : 0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

10,000 0.01 0.09 0.13 0.00 0.00 0.00 2.71 0.00 0.00 0.00 0.83 0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.08 0.04 0.42 0.05 0.25 0.43 1.76 0.50 0.25 0.35 0.69 0.15

1000 0.09 0.01 0.19 0.01 0.25 0.33 2.65 0.05 0.25 0.34 1.13 0.02

10,000 0.09 0.01 0.16 0.00 0.25 0.33 2.94 0.00 0.25 0.33 0.99 0.00

Table 3 Weibull—Standard
errors for quantile ratio
regression (QRR)

Quantile ratio = 0.8 : 0.2
β = (0.5, 0, 0)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.24 0.64 0.37 1.19 1.21 1.22 1.12 1.19 1.17 0.98 0.99 0.98

1000 0.07 0.19 0.12 1.20 1.21 1.12 1.06 1.07 0.99 0.98 0.99 0.96

10,000 0.02 0.06 0.04 1.14 1.16 1.15 0.99 1.01 1.00 0.98 0.97 0.98

β = (0.5,−0.5, 0.5)
ESE ASE/ESE BSE/ESE Acov

Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.24 0.67 0.41 1.19 1.17 1.14 1.12 1.19 1.15 0.97 0.96 0.98

1000 0.07 0.21 0.12 1.19 1.14 1.17 1.05 1.06 1.09 0.98 0.97 0.98

10,000 0.02 0.07 0.04 1.16 1.10 1.11 1.00 0.98 1.00 0.97 0.97 0.97

Quantile ratio = 0.9 : 0.4
β = (0.5, 0, 0)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.25 0.66 0.40 1.01 1.03 1.00 1.12 1.20 1.14 0.95 0.95 0.95

1000 0.08 0.19 0.12 0.97 1.07 0.99 1.00 1.13 1.03 0.93 0.96 0.95

10,000 0.02 0.06 0.04 1.00 1.01 0.93 1.00 1.02 0.94 0.95 0.95 0.94

β = (0.5,−0.5, 0.5)
ESE ASE/ESE BSE/ESE Acov

Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.23 0.71 0.39 1.10 0.96 1.06 1.22 1.16 1.24 0.96 0.94 0.95

1000 0.07 0.21 0.12 1.04 0.97 1.00 1.09 1.05 1.10 0.95 0.93 0.95

10,000 0.02 0.06 0.04 0.96 1.02 0.94 0.97 1.06 1.00 0.94 0.96 0.93

ESE: empirical standard errors; ASE: approximate standard errors; BSE: bootstrap standard errors; Acov:
coverage at nominal 95% for ASE

As expected, neither the GLM-based estimator nor the
naïve linear regression estimator performed well, as evi-
denced by the much larger MSE values in all settings. It
is worth noting that the apparent optimality of GLM-based
estimation in some of the instances of the scenario with
β = (0.5, 0, 0)� is actually the result of parallel esti-
mated quantiles ĤMLE (τ ) that give constant ratios across
the values of x. This behavior persists in the other scenario,

β = (0.5,−0.5, 0.5)�, resulting in an evident bias that does
not give any sign to vanish with increasing sample sizes.

The nonlinear estimation procedure forQRR, as described
in Sect. 2.2, yielded bias and MSE comparable to those
reported above. As anticipated, the initial value ξ̂2, which
was obtained using a standard linear model, resulted in an
estimate of γ (τ1) that was also a stationary point for the esti-
mation of γ (τ2) in 90–100% of the cases across scenarios.
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Table 4 Lognormal—Bias for crude generalized linear model (gamma, GLMg, and normal, GLMn), naïve linear regression (LM), and quantile
ratio regression (QRR)

Quantile ratio = 0.8 : 0.2
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.01 0.30 −0.52 −0.03 0.00 −0.00 0.01 −0.03 −0.00 0.03 0.01 −0.00

1000 0.04 0.32 −0.07 −0.01 −0.00 0.01 −0.04 −0.00 0.00 −0.00 0.02 0.00

10,000 0.04 0.32 −0.00 −0.00 0.00 0.00 0.02 −0.00 −0.00 −0.00 −0.01 0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.24 1.15 −0.48 −0.02 0.50 1.05 −0.01 −0.04 −0.50 −1.00 −0.11 −0.01

1000 0.29 1.09 −0.07 0.00 0.50 0.97 −0.06 0.00 −0.50 −0.93 −0.00 −0.01

10,000 0.30 1.10 −0.04 0.00 0.50 0.93 −0.12 −0.00 −0.50 −0.92 0.04 −0.00

Quantile ratio = 0.9 : 0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 −0.15 −0.25 −0.63 −0.03 −0.00 0.03 0.00 0.01 −0.00 0.01 0.06 −0.03

1000 −0.12 −0.23 −0.07 −0.01 −0.00 0.01 0.02 0.00 0.00 0.01 −0.02 0.00

10,000 −0.12 −0.23 −0.01 0.00 −0.00 −0.00 −0.04 −0.00 0.00 0.00 0.00 −0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.07 0.13 −0.57 −0.01 0.50 0.70 −0.01 0.03 −0.50 −0.72 −0.08 −0.02

1000 0.10 0.19 −0.09 −0.00 0.50 0.72 −0.03 0.00 −0.50 −0.73 0.04 −0.01

10,000 0.10 0.19 −0.01 −0.00 0.50 0.72 −0.08 0.00 −0.50 −0.72 −0.01 0.00

Table 5 Lognormal—Mean squared error for crude generalized linear model (gamma, GLMg, and normal, GLMn), naïve linear regression (LM),
and quantile ratio regression (QRR)

Quantile ratio = 0.8:0.2
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.02 0.18 0.38 0.04 0.00 0.34 1.66 0.34 0.00 0.10 0.55 0.11

1000 0.00 0.11 0.11 0.00 0.00 0.02 1.89 0.03 0.00 0.01 0.61 0.01

10,000 0.00 0.10 0.09 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.58 0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.08 2.25 0.34 0.05 0.25 2.78 1.77 0.39 0.25 1.55 0.57 0.15

1000 0.09 1.34 0.11 0.00 0.25 1.12 1.93 0.03 0.25 0.93 0.64 0.01

10,000 0.09 1.22 0.12 0.00 0.25 0.88 2.26 0.00 0.25 0.85 0.74 0.00

Quantile ratio = 0.9:0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.03 0.09 0.54 0.06 0.00 0.09 1.97 0.41 0.00 0.03 0.64 0.15

1000 0.02 0.06 0.15 0.01 0.00 0.01 2.54 0.04 0.00 0.00 0.86 0.01
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Table 5 continued

Quantile ratio = 0.9:0.4
β0 = 0.5 β1 = 0 β2 = 0

Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

10,000 0.01 0.05 0.16 0.00 0.00 0.00 2.76 0.00 0.00 0.00 0.98 0.00

β0 = 0.5 β1 = −0.5 β2 = 0.5
Sample size GLMg GLMn LM QRR GLMg GLMn LM QRR GLMg GLMn LM QRR

100 0.02 0.14 0.48 0.07 0.25 0.72 2.21 0.52 0.25 0.59 0.78 0.19

1000 0.01 0.06 0.15 0.01 0.25 0.53 2.67 0.05 0.25 0.53 0.91 0.02

10,000 0.01 0.04 0.16 0.00 0.25 0.51 2.64 0.00 0.25 0.52 0.99 0.00

Table 6 Lognormal—standard
errors for quantile ratio
regression (QRR)

Quantile ratio = 0.8:0.2
β = (0.5, 0, 0)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.19 0.58 0.33 1.30 1.18 1.22 1.24 1.18 1.19 0.99 0.98 0.98

1000 0.07 0.17 0.10 1.14 1.17 1.18 1.04 1.09 1.09 0.98 0.98 0.98

10,000 0.02 0.06 0.03 1.09 1.11 1.10 0.99 1.01 1.00 0.96 0.97 0.96

Quantile ratio = 0.8 : 0.2
β = (0.5,−0.5, 0.5)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.22 0.62 0.38 1.14 1.12 1.07 1.13 1.17 1.11 0.97 0.98 0.98

1000 0.07 0.19 0.12 1.14 1.12 1.06 1.05 1.06 1.03 0.96 0.97 0.95

10,000 0.02 0.06 0.03 1.15 1.08 1.12 1.04 1.01 1.06 0.97 0.96 0.97

Quantile ratio = 0.9 : 0.4
β = (0.5, 0, 0)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.24 0.64 0.39 0.92 0.94 0.92 1.17 1.24 1.18 0.91 0.95 0.92

1000 0.08 0.21 0.12 0.86 0.87 0.88 1.02 1.05 1.06 0.91 0.92 0.91

10,000 0.02 0.07 0.04 0.87 0.85 0.86 1.01 1.00 1.00 0.90 0.91 0.91

Quantile ratio = 0.9 : 0.4
β = (0.5,−0.5, 0.5)

ESE ASE/ESE BSE/ESE Acov
Sample size β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

100 0.26 0.72 0.43 0.86 0.85 0.85 1.10 1.16 1.13 0.92 0.89 0.90

1000 0.08 0.22 0.14 0.88 0.84 0.80 1.05 1.04 1.01 0.91 0.89 0.88

10,000 0.02 0.07 0.04 0.90 0.87 0.80 1.05 1.05 0.98 0.91 0.90 0.88

ESE: Empirical standard errors; ASE: approximate standard errors; BSE: bootstrap standard errors; Acov:
coverage at nominal 95% for ASE

In less than 2% of the cases, a single refinement step was not
sufficient.

In summary, QRRhas little bias andMSE in all the scenar-
ios and under all distributions considered in this simulation,
whereas approximate standard error estimation as proposed
in Sect. 2.4 performs best when the upper quantile of the

ratio is not too high on the tail. In general, bootstrap standard
errors are a valid alternative.
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Table 7 Number of households
(n), four sample quantiles of
equivalized disposable income
(EDI) and two quantile ratios by
country for the EU-SILC data

Country n EDI sample quantile Quantile ratio
0.2 0.4 0.8 0.9 0.8:0.2 0.9:0.4

Belgium 35,055 11,079 14,706 24,670 29,941 2.23 2.04

Croatia 48,735 2908 4288 8058 10,283 2.77 2.40

Czechia 110,901 4624 5865 9338 11,592 2.02 1.98

Denmark 81,757 19,464 24,871 38,289 45,943 1.97 1.85

France 45,301 14,990 19,590 31,780 40,470 2.12 2.07

Germany 172,393 12,340 16,733 28,341 35,189 2.30 2.10

Hungary 118,274 2993 3864 6212 7663 2.08 1.98

Ireland 73,110 12,257 16,199 31,397 40,000 2.56 2.47

Italy 288,014 9720 13,906 24,563 31,122 2.53 2.24

Netherlands 135,607 15,621 19,610 30,921 37,629 1.98 1.92

Norway 83,629 24,550 32,158 50,700 61,172 2.07 1.90

Poland 174,687 2625 3763 7017 9059 2.67 2.41

Portugal 80,677 4904 6858 13,250 18,093 2.70 2.64

Romania 83,436 1205 1815 3414 4352 2.83 2.40

Serbia 29,053 1218 1959 3906 5058 3.21 2.58

Slovak Republic 69,643 3518 4969 8287 10,117 2.36 2.04

Sweden 90,956 14,799 19,530 31,830 38,578 2.15 1.98

Switzerland 30,144 28,367 38,591 64,816 81,395 2.28 2.11

United Kingdom 124,995 11,774 16,100 29,800 38,234 2.53 2.37

Overall 1,876,367 4676 9756 26,395 35,327 5.65 3.62

5 Data analysis

We describe in this section an original application of our
methods to economic inequality in Europe. We pooled data
from several waves of the cross-sectional component of
the European Union Survey on Income and Living Condi-
tions (EU-SILC), where the equivalized disposable income
(EDI) was collected at household level. For this analysis, we
extracted observations on EDI for the 14-year time period
going from 2004 to 2017.We then linked these data to several
country-time specific macroeconomic indicators obtained
from theWorld Bank data repository, namely unemployment
rate, trade (sum of imports and exports values) as percentage
of GDP; and from the Fraser Institute data repository, namely
standardized indexes of hiring and firing regulations, and
government transfers and subsides. The latter two variables
range between zero and ten, with larger values correspond-
ing to less regulations for hiring and dismissal of workers,
and less government subsides, respectively. For details see
Gwartney and Lawson (2003). There were several other vari-
ables available from these data sources that we considered,
but that we did not include in the reported analysis, as they
were either irrelevant to inequality or too strongly associated
with other variables more readily interpretable. Moreover,
we had to exclude some EU countries as they did not have
income data (Cyprus, Estonia, Latvia, Lithuania, Luxem-
bourg, Malta, Slovenia) or had income data limited to only

1 year (Greece). Finally, out of the remaining 19 countries
included in the analysis, only 5 had data for the entire time
period, while 5 had data for 8 years or less, thus making the
assessment of temporal trajectories somehow limited.

It is important to remark that the data set is a repeated
cross-sectional survey, since each household has been sam-
pled only once (in a specific year). There is no repeated
sampling, which makes the assumption that data are inde-
pendent reasonable.

Number of households and selected sample quantiles for
the outcome EDI, along with sample quantile ratios 0.8:0.2
(quintile ratio) and 0.9:0.4 (which, for practical purposes,
we refer to as Palma ratio) are shown for each country and
overall in Table 7. After exclusions, the sample consisted of
1,876,367 households in total. Croatia, Poland, Serbia and
Portugal were among the countries with stronger inequality
according to either quantile ratio; while Denmark, Norway,
Netherlands and Czechia those with lower inequality. The
mean (standard deviation) of unemployment rate, trade, hir-
ing and dismissal regulations, and transfers and subsides
were, 8.1 (3.4), 97.1 (40.4), 4.1 (1.4), and 4.5 (1.1), respec-
tively.

We ran a QRR analysis on the quintile and Palma ratios
using Eq. (2) with link function g(u) = log(u− 1). For each
ratio, we fitted two models: Model 1, which included 18
dummy variables x j , j = 1, . . . , 18, for country (reference:
Belgium) and a second degree polynomial for year t (cen-
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Table 8 Estimates, standard
errors (SE) and p-values from
the 0.8:0.2 quantiles ratio
regressions for the EU-SILC
data

Model 1 Model 2
Estimate SE p-value Estimate SE p-value

Intercept 0.240 0.010 < 0.001 0.388 0.030 < 0.001

Belgium (reference) – – – – – –

Croatia 0.466 0.013 < 0.001 0.245 0.023 < 0.001

Czechia −0.244 0.011 < 0.001 −0.311 0.014 < 0.001

Denmark −0.193 0.011 < 0.001 −0.445 0.019 < 0.001

France −0.010 0.013 0.448 −0.209 0.022 < 0.001

Germany 0.111 0.011 < 0.001 −0.050 0.017 0.002

Hungary 0.147 0.011 < 0.001 0.006 0.014 0.681

Ireland 0.290 0.011 < 0.001 0.288 0.017 < 0.001

Italy 0.259 0.010 < 0.001 0.033 0.022 0.131

Netherlands −0.169 0.010 < 0.001 −0.211 0.011 < 0.001

Norway −0.096 0.011 < 0.001 −0.335 0.020 < 0.001

Poland 0.274 0.011 < 0.001 0.057 0.020 0.004

Portugal 0.411 0.012 < 0.001 0.208 0.021 < 0.001

Romania 0.769 0.012 < 0.001 0.274 0.025 < 0.001

Serbia 0.689 0.016 < 0.001 0.476 0.023 < 0.001

Slovak Republic −0.198 0.012 < 0.001 −0.174 0.015 < 0.001

Sweden −0.035 0.011 0.001 −0.237 0.018 < 0.001

Switzerland 0.128 0.015 < 0.001 −0.126 0.023 < 0.001

United Kingdom 0.288 0.011 < 0.001 −0.039 0.025 0.115

Year −0.031 0.001 < 0.001 −0.023 0.002 < 0.001

Year2 0.002 0.000 < 0.001 0.001 0.000 < 0.001

Unemployment 0.004 0.001 < 0.001

Trade −0.002 0.000 < 0.001

Hiring and dismissal regulations 0.028 0.002 < 0.001

Transfers and subsides 0.017 0.004 < 0.001

tered at 2004); Model 2, which, in addition to the covariates
of the first model, included the macroeconomic indicators
introduced above, w j , j = 1, . . . , 4. Let x denote the vector
collecting all the aforementioned variables. Then Model 2
can be written as

log

{
HY (τ1|x)

HY (τ2|x)
− 1

}

= β0 +
18∑
j=1

x jβ j + β19t + β20t
2 + w1β21

+w2β22 + w3β23 + w4β24,

while Model 1 can be specified as above with βk = 0,
k = 21, . . . , 24. The quantity exp(βk), k = 1, . . . , 24 thus
represents the adjustedmultiplicative effect of the kth covari-
ate on the relative inequality HY (τ1|x)/HY (τ2|x)− 1, while
exp(β0) is the baseline relative inequality. Standard errors
were estimated as detailed in Sect. 2.4. (We also computed
bootstrap standard errors and there were no appreciable dif-

ferences with approximate standard errors, probably due to
the very large sample size.)

The results are reported in Tables 8 (quintile ratio) and 9
(Palma ratio). We will now make general statements about
the results with no specific reference to either ratio, as the
results are often similar. We will then point out and discuss
differences.

There were clear differences between countries accord-
ing to Model 1, with higher inequality in Croatia, Portugal,
Romania, and Serbia, but lower inequality in Czechia,
Netherlands, Slovak Republic and Nordic countries. Some
differences persisted after adjusting for the macroeconomic
indicators (e.g., Ireland), while other differences decreased
in magnitude (e.g., Italy and Poland), or increased in mag-
nitude (e.g., Denmark and Sweden). That is, differences in
income inequality among countries are partly confounded by
country-level fundamentals.

Unemployment is significantly associatedwith inequality,
as one would expect. On the other hand, higher levels of
trade seem to be associated with lower income inequality.
Interestingly, higher levels of transfers and subsides by the
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Table 9 Estimates, standard
errors (SE) and p-values from
the 0.9:0.4 quantiles ratio
regressions for the EU-SILC
data

Model 1 Model 2
Estimate SE p-value Estimate SE p-value

Intercept 0.117 0.009 < 0.001 −0.066 0.027 0.013

Belgium (reference) – – – – – –

Croatia 0.335 0.012 < 0.001 0.160 0.020 < 0.001

Czechia −0.105 0.010 < 0.001 −0.184 0.013 < 0.001

Denmark −0.227 0.010 < 0.001 −0.450 0.016 < 0.001

France 0.062 0.011 < 0.001 0.035 0.020 0.072

Germany 0.061 0.010 < 0.001 0.024 0.015 0.105

Hungary 0.093 0.010 0.409 −0.060 0.013 < 0.001

Ireland 0.359 0.010 < 0.001 0.236 0.016 < 0.001

Italy 0.167 0.009 < 0.001 0.058 0.019 0.003

Netherlands −0.122 0.010 < 0.001 −0.119 0.010 < 0.001

Norway −0.153 0.010 < 0.001 −0.330 0.019 < 0.001

Poland 0.230 0.010 < 0.001 0.031 0.018 0.082

Portugal 0.495 0.010 < 0.001 0.361 0.019 < 0.001

Romania 0.710 0.010 < 0.001 0.262 0.022 < 0.001

Serbia 0.466 0.014 < 0.001 0.310 0.019 < 0.001

Slovak Republic −0.134 0.010 < 0.001 −0.167 0.013 < 0.001

Sweden −0.105 0.010 < 0.001 −0.257 0.016 < 0.001

Switzerland 0.103 0.013 < 0.001 −0.187 0.020 < 0.001

United Kingdom 0.299 0.010 < 0.001 −0.003 0.022 0.886

Year −0.026 0.001 < 0.001 −0.015 0.001 < 0.001

Year2 0.001 0.000 < 0.001 0.001 0.000 < 0.001

Unemployment 0.005 0.001 < 0.001

Trade −0.003 0.000 < 0.001

Hiring and dismissal regulations 0.033 0.002 < 0.001

Transfers and subsides 0.055 0.003 < 0.001

government and stricter regulations for hiring and dismissal
of employees are both independently associated with lower
income inequality.

As for the time trend, we note that both models suggest
that inequality initially declined and then regained ground. To
determine, approximately, atwhat point in time this occurred,
we can simply consider that

∂

∂t

HY (τ1|x)

HY (τ2|x)
= (β19 + 2β20t) exp(x�β).

If we use the estimates from Model 1 in Table 8, the expres-
sion above is zero at t = 7.75, that is, towards the endof 2011.
So while income inequality as measured by these quantile
ratios had been improving in the EU area as of 2004, the con-
ditions somewhat worsened after 2011, which we speculate
to be partly explained by the lagged effects of the financial
and economic crisis that started in 2007–2008.

6 Final remarks

To our knowledge, this work represents the first formal pro-
posal for Quantile Ratio Regression (QRR). The methods
developed herein are distribution free and can be scaled up
to analyse large collections of data, as those obtained from
multi-country surveys, for example. We believe that QRR is
sufficiently versatile to find application and generate interest
in many research areas.

We have proposed two strategies for estimation. The first,
presented in Sect. 2.2, starts from the nonlinear specification
of the model and works well for small to moderately sized
data sets. An alternative strategy based on linearization is
presented in Sect. 2.3 and is suitable for very large data sets
(with a sample size in the order of millions). Both strategies
performed well in a simulation study.

In our motivating application the data were obtained from
a series of cross-sectional surveys, and the assumption that
observations are independent is tenable. A possible venue for
future research is the extension of our methods to panel data,
as are the extensions to censored and discrete outcomes (e.g.,
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Geraci and Farcomeni 2022). Given the recent interest and
developments in causal inference for conditional quantiles
(e.g., see Koenker et al. 2018), we note that instrumental
variables (Chernozhukov and Hansen 2005, 2006) seem to
us a natural candidate for conducting causal analysis in QRR,
although we believe that the identification of causal effects
in this highly non-linear setting might not be elementary.

We conclude by circling back to our opening statements,
saying that another open route for further work is devising a
methodology for performing quantile share ratio regression,
where the summary statistic is not a ratio of quantiles (as in
this work), but a ratio of shares above specific quantiles.
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A Quantile ratio regression in R

In this appendix,we briefly illustrate the functionqrr as pro-
vided in theQtools package (Geraci 2016) inR. The reader
is referred to function’s documentation for all the details.

The qrr function requires the formula argument, as
commonly specified with the response on the left of a ‘∼’
operator, and the terms, separated by ‘+’ operators, on the
right; the data argument, a data frame in which to inter-
pret the variables named in the formula; and taus, a vector
containing the two quantile indices for the quantile ratio of
interest (the order of the quantiles is irrelevant). All other
arguments are set by default and can bemodified as appropri-
ate. Estimation as in Sect. 2.2 is obtained with linearize
= FALSE, whereas linearize = TRUE (the default)
gives the large-sample algorithm discussed in Sect. 2.3. The
Qtools package also provides S3 methods functions such
as summary, coef, predict and vcov that are com-
monly used to summarize and extract information from fitted
objects.

In the example further below, the data are generated
according to theWeibullmodel in Sect. 4with a single covari-
ate x drawn from a uniform distribution. The formula y ∼ x
in qrr specifies the model

log

{
HY (τ1|x)
HY (τ2|x) − 1

}
= β0 + β1x

that is to be fitted. Note that the only link function imple-
mented in the package (currently version 1.5.9) is g(u) =
log(u−1) but other transformations may be implemented in
future versions of the package.

# generate data from a Weibull model
library(Qtools)
set.seed(123)
n <- 10000
x <- runif(n, -0.5, 0.5)
R <- 1 + exp(0.5 + x)
tau1 <- 0.8
tau2 <- 0.2
alpha <- 1/log(R)*log(log(1-tau1)

/log(1-tau2))
y <- rweibull(n, shape = alpha, scale = 1)
dd <- data.frame(x = x, y = y)

# fit quintile ratio regression
fit <- qrr(y ˜ x, data = dd,

taus = c(tau1,tau2))

A call to summary yields the familiar regression output
in R.

> summary(fit)
> Quantile ratio regression 0.8:0.2

> Coefficients linear predictor:
> Estimate Std.Err t value

Pr(>|t|)
> (Intercept) 0.502843 0.020798

24.177 < 2.2e-16 ***
> x 1.020963 0.071823

14.215 < 2.2e-16 ***
> ---
> Signif. codes: 0 ‘***’ 0.001 ‘**’

0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> Degrees of freedom: 10000 total; 9998
residual

We conclude this tutorial by showing the poor results one
obtains when using a GLM-based estimator (with normal
family) on these data.

fit.glm <- glm(y ˜ x, data = dd,
family = gaussian)

m <- predict(fit.glm, type = "response")
sigma <- sqrt(fit.glm$deviance/fit.glm$df.

residual)
Qhat1 <- qnorm(tau1, mean = m, sd = sigma)
Qhat2 <- qnorm(tau2, mean = m, sd = sigma)
z <- log(Qhat1/Qhat2 - 1)

> lm(z ˜ x, data = dd)

> Coefficients:
> (Intercept) x
> 0.45606 -0.08369
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