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Dilva Terzano . Ian Kotzé . Christo Marais . Silvio Cianciullo .

Alessio Farcomeni . Paolo Caroli . Luca Malatesta . Fabio Attorre

Received: 30 March 2017 / Accepted: 8 January 2018

� Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Alien plants invasion has negative impacts

on the structure and functionality of ecosystems.

Understanding the determinants of this process is

fundamental for addressing environmental issues,

such as the water availability in South Africa’s

catchments. Both environmental and anthropogenic

factors determine the invasion of alien species;

however, their relative importance has to be quanti-

fied. The aim of this paper was to estimate the

importance of 32 explanatory variables in predicting

the distribution of the major invasive alien plant

species (IAPS) of South Africa, through the use of

Species Distribution Models. We used data from the

National Invasive Alien Plants Survey, delineated at a

quaternary catchment level, coupled with climatic,

land cover, edaphic, and anthropogenic variables.

Using two-part generalized linear models, we com-

pared the accuracy of two different sets of variables in

predicting the spatial distribution of IAPS; the first

included environmental correlates alone, and the

second included both environmental and anthro-

pogenic variables. Using Random Forest, we explored

the relative importance of the variables in producing a

map of potential distribution of IAPS. Results showed

that the inclusion of anthropogenic variables did not

significantly improve model predictions. The most

important variables influencing the distribution of

IAPS appeared to be the climatic ones. The modeled

potential distribution was analyzed in relation to

provinces, biomes, and species’ minimum residence

time.

Keywords Alien Species � Generalized Linear

Models � Random Forest � Species Distribution

Models

Introduction

Invasive alien plant species are recognized as a major

component of global change (Higgins and Richardson

1996; Higgins et al. 2000) with effects on biodiversity,

ecosystem services, disturbance regimes,
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biogeochemical cycles, and human societies (Van

Wilgen et al. 2001; Pauchard and Alaback 2004;

Sharma et al. 2005; Thuiller et al. 2007; Gassó et al.

2009; Rödder et al. 2009; Pejchar and Mooney 2009).

Species Distribution Models (SDMs) have been

used for identifying suitable areas for species to invade

and thus prioritizing IAPS surveys and management

actions. One of the factors influencing model robust-

ness is the selection of meaningful predictor variables

in relation to the spatial scale and geographical extent

(Austin 2002; Araújo and Guisan 2006; Elith and

Leathwick 2009; Franklin 2010). Robust SDMs are

useful to improve our understanding of the importance

of environmental and human-related variables in

influencing the ranges of species (Luoto et al. 2006;

Ohlemuller et al. 2006).

The selection of variables should be based on the

ecological and physiological characteristics of the

IAPS, data resolution, quality, and availability (Thuil-

ler et al. 2003; Dormann 2007; Rödder et al. 2009;

Austin and Van Niel 2011). Many studies have used

SDMs to predict the invasion suitability of areas based

on climatic variables (Peterson and Vieglais 2001;

Rödder et al. 2009), which at large biogeographical

scales, set the physiological niche of plant species for

survival and reproduction (Rouget and Richardson

2003; Thuiller et al. 2003). However, opinions differ

on whether climatic variables are sufficient for

explaining species distributions (Pearson and Dawson

2003; Thuiller et al. 2004; Pearson et al. 2004). There

is a need for more evidence in support of the idea that

purely climate-based modeling proves sufficient to

predict the distribution of IAPS (Araújo and Guisan

2006; Araújo and Luoto 2007; Austin and Van Niel

2011), compared to using other environmental and

human-related variables (e.g., Pearson et al. 2004;

Thuiller et al. 2004; Pauchard and Alaback 2004; del

Barrio et al. 2006; Coudun et al. 2006; Luoto et al.

2006; Ficetola et al. 2007).

Other factors such as land cover, soils, fire

frequency, and anthropogenic variables determine

the presence or absence of a species in a particular

area (Rouget and Richardson 2003; Pearson and

Dawson 2003; Staver et al. 2011). Unfortunately,

these variables are rarely taken into account due to the

scarcity of adequate data sets (Thuiller et al.

2003, 2005). SDMs that incorporate these factors

could have an increased predictive power, and unveil

specific factors responsible for detailed distributional

phenomena (Roura-Pascual et al. 2004). Only a few

studies have been conducted comparing the impor-

tance of variables as well as the variation of this

importance at different scales (Ohlemuller et al. 2006;

Luoto et al. 2006; Funk et al. 2016). Consequently,

recent studies have started to incorporate human

activities and disturbances variables (e.g., Pino et al.

2005; Thuiller et al. 2006; Chytrý et al. 2008; Gassó

et al. 2009). Roura-Pascual et al. (2004) stated that

SDMs that do not take into account anthropogenic

disturbance could underestimate the predicted species

distribution. Hence, the need to assess the importance

of human-related predictor variables for a successful

modeling of IAPS (Dormann 2007; Broennimann

et al. 2007).

South Africa represents an interesting case study

since it has been invaded by numerous species with

significant ecological and economic implications

(Richardson et al. 2005; Sharma et al. 2005). The

number of IAPS and their impacts have increased

since the first concerns regarding plant invasion

emerged in the 1770s with the introduction of Opuntia

ficus-indica, and Prospopis glandulosa, P. juliflora

and P. velutina in the 1800s (Milton and Dean 2010).

IAPS, especially large trees, have a greater water

usage compared to native species (Calder and Dye

2001; Mallory et al. 2011) resulting in the annual

runoff decline registered in the past decades, adversely

affecting water supplies (Le Maitre et al. 1996, 2000).

According to Cullis et al. (2007), the impact of IAPS in

South Africa is approximately 4% of current regis-

tered water use, and could increase to 16% in the

future. These adverse impacts of IAPS on water flows

have been the prime motivation for the establishment,

in 1995, of South Africa’s national Working for Water

programme (WfW) (Le Maitre et al. 2016). The

rationale behind it being that the most cost-effective

way to increase water supplies is to remove IAPS from

catchments–more water could be available at a lower

cost where IAPS control operations are in place

compared to developing additional water supply

schemes (Le Maitre et al. 1998). Although this public

program is one of the largest ecosystem restoration

programs in the world (Hobbs 2004; Richardson et al.

2005), its effectiveness in minimizing the spread has

recently been proven to be questionable (McCon-

nachie et al. 2012; van Wilgen et al. 2016). The use of

robust and reliable SDMs for IAPS can be a useful tool

for stakeholders to prioritize interventions by control
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programs and monitor their progress, in order to reach

successful and efficient implementation.

This study tested the appropriateness of including

human-related variables in SDMs for predicting the

distribution of IAPS, and assessed the variables’

importance on the presence and abundance of these

species. Using a newly available dataset on IAPS

distribution and density, the National Invasive Alien

Plant Survey (NIAPS), conducted at quaternary

catchment (QC) level, we addressed the following

questions: (1) what are the main factors influencing the

spatial distribution of the main IAPS of South Africa?

(2) are there differences in the influence that these

variables have on the potential presence and abun-

dance of these IAPS? (3) does the inclusion of

anthropogenic variables in the SDMs result in a better

prediction and successful modeling of these invasive

plants? Considering that IAPS present a growing

challenge for environmental managers and policy-

makers (Higgins and Richardson 1996; Rouget et al.

2002), we analyzed the predicted potential spread of

the main South African IAPS, in relation to provinces,

biomes, and species’ residence time with the intent of

providing to decision makers a clearer understanding

of the impact of each factor.

Methods

Study area

South Africa is the southernmost country in Africa and

due to a varied topography and oceanic influence, a

great variety of climatic zones exist, ranging from the

extreme desert of the southern Namib in the northwest

to the lush subtropical climate along eastern coastal

areas. As a result of the wide range of climatic and

geomorphological differences, South Africa hosts a

variety of different distinct communities of plants and

animals (Rutherford and Westfall 1986) that have

common characteristics for the environment they exist

in formed in response to a shared physical climate

(Biomes). The biomes identified in South Africa are

eight. They include the grassy dwarf shrublands of the

Nama and Succulent Karoo, and the annual plant

formations of the environmentally harsh Desert in the

western part of the Country (Mucina and Rutherford

2006); the Mediterranean like shrubland and heath-

land vegetation of the biodiversity hotspot Cape

Fynbos; the Grasslands of the central plateaux where

the combination of frost, fire, and grazing prevent the

establishment of trees; the eastern subtropical Albany

Thicket, which is a closed shrubland/low ‘‘forest’’

dominated by evergreen, sclerophyllous, or succulent

trees, shrubs, and vines; the eastern Indian Ocean

Coastal Belt dominated by evergreen temperate mul-

tilayer forests; the northern Savanna, which is char-

acterized by the dynamic coexistence of grasses

(mainly C4 type) and woody vegetation.

Response variable

Plant surveys provide essential information that can

determine the geographic extent of an IAPS, define its

ecological requirements, indicate the potential for

further spread, and provide a historical account of the

IAPS’s introduction and expansion (Henderson 1999).

The NIAPS was implemented to establish a cost-

effective and statistically sound IAPS monitoring

system for South Africa at a quaternary catchment

level. It used a stratified systematic sampling

approach, which consists of 72,682 sample points

distributed proportionally among environmental strata

representing the steepest gradient contributing the

most to the IAPS occurrence within the country. An

aerial field survey was conducted and at each 100 m2

survey plot the following attributes were captured; (1)

overall density of IAPS; (2) the three dominant IAPS;

(3) density per dominant IAPS, and (4) size class per

dominant IAPS according to the WfW mapping

standards (Table 1)(Working for Water Mapping

Standards 2003; Kotzé et al. 2010).

Data were grouped into quaternary catchments

(QC), which is the basic unit for water resource

management in South Africa, and the operational

delineation for WfW clearing projects. Total species

included in the survey amounted to 215 and was

obtained from three referenced species classifications

(Nel et al. 2004; Robertson et al. 2003; Marais et al.

2004). A final list of 27 major plant invaders was

produced, and species were mapped and included in

the NIAPS database (Table 2). They were recorded as

species (e.g., Arundo donax) or genera when referring

to multiple species not easily differentiable but with

similar ecological requirements (e.g., Opuntia spp.

includes Opuntis ficus-indica and Opuntia stricta).

The majority of species are alien phanerophytes likely

reflecting the high introduction pressure of trees since

Plant Ecol

123



and the facilitation of alien tree spread through

deliberate and massive planting (Richardson 1998).

As response variable we used the condensed area

value for each taxon, which expresses the equivalent

of the total invaded area with the canopy cover

rescaled to 100% (Versfeld et al. 1998). For example,

100 ha that was covered by 10% with IAPS was

expressed as a condensed area of 10 ha with 100%

cover. The condensed area was calculated by multi-

plying the average IAPS density (%) by the invaded

area (ha) and dividing by 100. We then normalized the

condensed area of each IAPS within the QCs (Kotzé

et al. 2010).

Explanatory variables

The selection of variables was based on the under-

standing of the ecological and biophysical processes

influencing the dispersal of the species, the availability

of data and the purpose of the model (Thuiller et al.

2003, 2005). The choice of the climatic and land use

variables follows Rouget et al. (2002, 2004), and

Thuiller et al. (2007). The use of other environmental

Table 1 List of

explanatory variables

divided into 25

environmental (E) and 5

anthropogenic variables (A)

Explanatory variables (unit) Acronyms Variable type

Annual precipitation (mm) Ptot E

Winter precipitation (mm) Pw E

Summer precipitation (mm) Psm E

Spring precipitation (mm) Pa E

Autumn precipitation (mm) Psp E

Mean annual temperature (�C) Tm E

Maximum temperature of January (hottest month) (�C) Tmx E

Minimum temperature of July (coldest month) (�C) Tmn E

Duration of frost period (days) Frost E

Growing season duration (days) Msg E

Total profile plant available water (mm) Paw E

Slope (%) Slope E

Soil pH pH E

Nitrogen content N E

Podzolic soils Soil1 E

Red-yellow well-drained, massive or weakly structured soils Soil2 E

Rocky areas Soil3 E

Sandy soils with little or no profile development Soil4 E

Soils with a plinthic horizon Soil5 E

Soils with a strong texture contrast Soil6 E

Soils with limited pedological development Soil7 E

Strongly saline soils Soil8 E

Well-structured soils generally with a high clay content Soil9 E

Natural areas Natur E

Waterbodies Water E

Rivers River E

Cultivations and plantations Cult A

Degraded areas Degr A

Urban areas Urb A

Railways Rail A

Roads Roads A

Fire frequency Fire A
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variables, such as soil water, as well as some human-

related variables, such as roads and urban areas was

based on Richardson et al. (2005).

– We estimated the values of environmental (cli-

mate, soil, land use, etc.) and human-related

variables (roads, railways, urban areas) from two

databases with spatially explicit GIS data layers

(Table 1). We identified nine climatic variables

(Schulze 2008), slope, and the ten soil variables

from the ARC’s Land Type Survey database (Land

Type Survey Staff 1972–2006 (2006)), while land

use and other human-related variables were

obtained from the National Land Cover database

(CSIR and ARC 2005). Considering also the

importance of fire history and soil nitrification on

the spread of alien plant species in limiting

environments as South Africa (e.g., Funk et al.

2016) we have included fire frequency fire fre-

quency (F) from a fire count map for the period

2000–2013 and based on MODIS MCD64 burnt

area product (Giglio et al. 2009), as well as the

nitrogen content (N) of soils at a depth of 20 cm

obtained from the AfSIS Africa Soil Map at spatial

resolution of 250 m (Hengl et al. 2015).

Land cover, soil type, and human-related variables

were standardized for the area of each QC. The rest of

the variables were calculated by averaging the data

within each QC (e.g., climatic variables, soil pH, etc.).

Model

Zero-inflated generalized linear models (GLMs) were

used to examine the variation in the occurrence and

abundance of the IAPS for each QC across the study

area (Segurado and Araújo 2004). We fitted two-part

models to analyze the relationship and identify factors

explaining occurrence and abundance. The first part of

the model is a logistic regression model to analyze the

influence of the explanatory variables on the presence

of IAPS. The second part is a multivariate linear

regression model for the log-abundance, which high-

lights the influence of the explanatory variables on the

abundance of IAPS (Di Lorenzo et al. 2011). Since the

NIAPS database had both presence and absence data,

and presence-only models tend to overpredict the

actual invasion distribution, we applied a model that

uses presence/absence data (Senan et al. 2012). The

log-likelihood of the two-part model was expressed as

the sum of the log-likelihood of each part, and

maximum likelihood estimation was then performed

simultaneously on the two parts to avoid bias in

parameter and standard error estimates.

Model selection was performed using a forward

stepwise algorithm based on minimization of the

Akaike Information Criterion (AIC), which gives

guarantees against multicollinearity issues and leads

to parsimonious models with good predictive proper-

ties. Collinearity was checked for the final multivari-

ate model through variance inflation factors.

The two-part model was run twice: first, using only

the environmental variables, and secondly using both

environmental and anthropogenic variables. To

Table 2 List of NIAPS species/genus referred to as IAPS

from here on (Kotzé et al. 2010)

IAPS Family

Acacia Cyclops Fabaceae

Acacia melanoxylon Fabaceae

Acacia saligna Fabaceae

Acacia spp. Fabaceae

Agave spp. Agavaceae

Arundo donax Poaceae

Atriplex nummularia Chenopodiaceae

Caesalpinia decapetala Fabaceae

Cereus jamacaru Cactaceae

Cestrum spp. Solanaceae

Chromolaena odorata Asteraceae

Eucalyptus spp. Myrtaceae

Hakea spp. Proteaceae

Jacaranda mimosifolia Bignoniaceae

Lantana camara Verbenaceae

Melia azedarach Meliaceae

Opuntia spp. Cactaceae

Pinus spp. Pinaceae

Populus spp. Salicaceae

Prosopis spp. Fabaceae

Psidium gaujava Myrtaceae

Rosa rubiginosa Rosaceae

Salix babylonica Salicaceae

Senna didymobotrya Fabaceae

Sesbania punicea Fabaceae

Solanum mauritianum Solanaceae

Tamarix chinensis Tamaricaceae
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understand which set of variables is more appropriate

we compared the out-of-bag prediction error values of

random forest models. The prediction error is the

squared difference between observed and predicted

values, and this can be estimated repeatedly on subsets

of observations that are not used for estimation (out-

of-bag observations). The model with the lowest error-

rate was considered the best.

We also analyzed if the difference between the

error-rates for each species were statistically signifi-

cant, by applying the Wald test (Agresti 2002) after

estimation of the standard errors via resampling. The

null hypothesis for the selection of the explanatory

variables was that the difference between error-rates

of the two models was 0, in other words, that the use of

either model does not result in significant differences

in the response predictions. If p value\ 0.05 the

difference between the models is significant, hence the

inclusion of anthropogenic variables results in a more

adequate prediction. Similarly, the null hypothesis for

the selection of the species was that all the coefficients

of the regression model were 0 for each species.

We then used a Random Forest (RF) model to

assess the importance of the explanatory variables in

influencing the distribution and abundance of IAPS

(Breiman 2001). In an RF model, bootstrap samples

are used to construct multiple trees with a subset of

randomized variables. The measure of importance was

derived from the contribution of each explanatory

variable accumulated along all nodes and trees (Senan

et al. 2012). We analyzed the model accuracy by

computing the Gini Impurity Measure. We then

compared the current IAPS distribution with the

predictions from the RF model, taking into account

the relationship with the variables. In order to have

maps for this comparison, we converted the probabil-

ity data into binary presence/absence data, using a

probability threshold value above which the IAPS

were deemed to be present. We used the method of the

least predicted value: the lowest value of the presence

probability associated with the areas where the species

was actually observed, as the minimum value beyond

which a species was considered present. All the

statistical analyses were performed in R (R Core Team

2014) Fig. 1. We finally analyzed the potential

distribution of the IAPS in relation to the South

African provinces and biomes, and we also assessed

the relative occupancy as a function of the species’

residence time.

Results

Assessment of variables

We assessed whether the use of anthropogenic vari-

ables could improve the accuracy of the predictive

model. Table 3 shows the values for each species of

the error-rate related to the model run using only

environmental variables (OOB error-rate ENV) and to

the model run including the human-related variables

(OOB error-rate TOT). For each taxon, the best model

is expressed with the lowest error-rate value. The ‘‘D
error-rate (ENV-TOT)’’ shows the differences

between the error-rate of the two models: if D error-

rate is negative, the best model is the one with the

environmental set of variables alone, if D error-rate is

positive, the model with both environmental and

anthropogenic variables is the one with a better

prediction.

For 13 IAPS, the model built with environmental

and anthropogenic variables (TOT) seemed to be more

suitable for the prediction. For 10 IAPS, the model

built only with environmental variables (ENV) was

more suitable. For the remaining 4 IAPS, no difference

was observed. We then analyzed the statistical signif-

icance of these differences, through the use of the

Wald test. This test indicated that for nearly all the

IAPS, excluding Caesalpinia decapetala and Senna

didymobotrya, there are no significant differences in

the predictions given by the two models

(p value[ 0.05).

For the rest of the analysis, we decided to use the

ENV model, by excluding the human-related vari-

ables, which were not found to be instrumental in

improving the accuracy of the model.

Potential spread

The average decrease in the Gini impurity measure

showed the species for which the RF model provided a

statistically significant prediction. Out of the 27 IAPS

considered, only 14 had significant results (p

value[ 0.05), the remaining IAPS were found to be

those with the least number of QC currently invaded

(generally less than 50–Table 4). The latter IAPS were

consequently excluded from further analysis. Ana-

lyzed species showed a differential behavior with

species characterized by a small current and predicted

invaded areas, e.g., Ceresus jamacaru and Acacia
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cyclops, and species with a large invaded areas, such

as Acacia spp. (A. baileyana, A. dealbata and A.

mearnsii) and Ecualyptus spp. (E. camaldulensis and

E. conferruminata). Some species have a low relative

occupancy and a great potential invasion increase,

such as Lantana camara and Melia azederach, while

others have already occupied the potential spread

(Table 5). We assessed if this was related to the

difference in residence time. However, the association

between relative occupancy and minimum residence

time was weak and no association was identified.

The biomes differed markedly in their invasibility.

According to the predictions obtained by the model no

species seemed to be able to invade the Desert, only

two IAPS (Agave spp., Opuntia spp.) could potentially

invade the Nama-Karoo and four IAPS (Acacia

cyclops, Eucalyptus spp., Pinus spp. and Acacia

spp.) could potentially invade the Succulent Karoo.

While the other biomes are more prone to invasion,

with the Savanna and Grasslands suitable for almost

all the IAPS considered (Table 6).

The areas most affected by the potential spread of

the IAPS were found to be those adjacent to the major

urban areas, coastal settlements, and the northwestern

plains. With the exception of the Northern Cape

Province, all South African provinces were found to

have a percentage of potentially invaded QCs higher

than 50%. The eastern coastal and central-eastern

provinces (KwaZulu-Natal, Mpumalanga, and Gaut-

eng) were those that had the highest percentage of

potentially invaded area. Gauteng and KwaZulu-

Natal, according to the predictive model, would be

completely suitable for the spread of the IAPS

(Table 7, Fig. 2).

Determinants of invasion

The two-part model highlighted both positive and

negative correlations between the explanatory vari-

ables and the species distribution. First, the influence

of the explanatory variables on the presence of the

IAPS was highlighted with the logistic part (Table 8 in

Appendix), and second, the influence of the explana-

tory variables on the richness of the IAPS was

highlighted with the regression part (Table 9 in

Appendix).

The presence of IAPS was found to be positively

correlated with the mean precipitation of autumn

season, mean annual temperature, mean growing

season duration, density of natural areas, mean soil

Fig. 1 Map of South Africa showing the currently invaded QCs and potentially new QCs suitable for invasion. In white are the QCs for

which the two-part model showed invasion potential values that were lower than the set presence threshold. (Color figure online)
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water content, and most of the soil variables. IAPS

presence was found to be negatively correlated with

the mean annual precipitation, mean precipitation of

winter and summer season, mean maximum temper-

ature of hottest month; mean minimum temperature of

coldest month, and mean duration of frost period.

IAPS abundance was positively correlated with the

mean precipitation of spring and autumn season, mean

moisture growing season duration, density of rivers,

and two soil variables (index of rocky areas and soils

with a plinthic horizon). IAPS abundance was found to

be negatively correlated with the mean precipitation of

summer season, mean annual temperature, mean

duration of frost period, density of water bodies, and

two soil variables (red-yellow well-drained, massive

or weakly structured soils and well-structured soils,

generally with a high clay content).

Importance of variables

The RF model provided a measure of the importance

of the explanatory variables influencing the distribu-

tion of the IAPS. These importance values were

species-specific, but we identified similarities when

Table 3 Out-of-bag (OOB) error-rate for each species for the two RF models built with only environmental variables (ENV) and

with the inclusion of anthropogenic variables (TOT)

IAPS OOB error-rate ENV OOB error-rate TOT D error-rate (ENV-TOT) p value (Wald eest) Sign.

Acacia cyclops 0.071 0.071 0 1

Acacia melanoxylon 0.084 0.084 0 1

Acacia saligna 0.084 0.084 0 1

Acacia spp. 0.163 0.163 0 1

Agave spp. 0.294 0.296 - 0.002 0.841

Arundo donax 0.236 0.294 - 0.058 0.724

Atriplex nummularia 0.311 0.311 0 1

Caesalpinia decapetala 0.166 0.166 0 1

Cereus jamacaru 0.235 0.133 0.102 0.035 *

Cestrum spp. 0.153 0.153 0 1

Chromolaena odorata 0.102 0.102 0 1

Eucalyptus spp. 0.297 0.282 0.015 0.898

Hakea spp. 0.076 0.076 0 1

Jacaranda mimosifolia 0.214 0.285 - 0.071 0.699

Lantana camara 0.198 0.241 - 0.043 0.580

Melia azedarach 0.241 0.222 0.019 0.567

Opuntia spp. 0.190 0.157 0.033 0.198

Pinus spp. 0.240 0.230 0.010 0.897

Populus spp. 0.209 0.215 - 0.006 0.878

Prosopis spp. 0.115 0.096 0.019 0.688

Psidium gaujava 0.152 0.152 0 1

Rosa rubignosa 0.001 0.001 0 1

Salix babylonica 0.203 0.190 0.013 0.512

Senna didymobotrya 0.276 0.166 0.110 0.041 *

Sesbania punicea 0.250 0.250 0 1

Solanum mauritianum 0.093 0.091 0.002 1

Tamarix chinensis 0.100 0.298 - 0.198 0.272

Significance of the difference between the two values (D error-rate) was tested with the Wald test (p value). Significance: p\ 0.01

(**); p\ 0.05 (*)
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comparing the 14 IAPS. Climatic variables have an

overwhelming importance on the distribution of IAPS,

particularly both annual and summer precipitation.

While land cover, pedological, and anthropogenic

variables are similarly of minor importance, the only

exception being pH for Lantana camara, Agave spp.

and Opuntia spp. and density of waterbodies for

Acacia cyclops (Table 10 in appendix).

Discussion

Modeling approach

We have modeled the distribution of the major South

African IAPS, on the assumption that these species are

at equilibrium with their environment (Rouget et al.

2004; Guisan and Thuiller 2005). Although most of

our IAPS have a long history in the South African

region (Table 5), it is likely that they have not yet

reached equilibrium due to dispersal limitations

(Rouget et al., 2004; Pearson, 2010).

Five major factors could affect the accuracy and the

predictive capacity of our models. First, SDMs are

based on the assumption that the current distribution of

IAPS and the environmental characteristics of their

current range provide a good indication of their

potential range. However, the predicted potential

range could have been overestimated for IAPS occur-

ring in few scattered locations, or underestimated for

IAPS currently occurring in a small range (Rouget

et al. 2004). Second, spatial bias in the NIAPS

database, related to the two overlapping layers (land-

scape and riparian), may have led in the riparian areas

Table 4 The number of

QCs currently invaded is

reported for each species

The Gini impurity measure

highlighted the species for

which the predictor

variables significantly

explained their distribution.

A lower value of the index

represents the susceptibility

of the model to the

exclusion of a variable

Significance: p\ 0.01 (**);

p\ 0.001 (***)

IAPS Currently invaded QCs p value (Gini index) Sign.

Acacia cyclops 55 0.120

Acacia melanoxylon 12 0.001 ***

Acacia saligna 48 0.001 ***

Acacia spp. 515 0.931

Agave spp. 61 0.941

Arundo donax 17 0.001 ***

Atriplex nummularia 16 0.001 ***

Caesalpinia decapetala 24 0.001 ***

Cereus jamacaru 38 0.619

Cestrum spp. 13 0.001 ***

Chromolaena odorata 113 0.999

Eucalyptus spp. 409 0.991

Hakea spp. 39 0.001 **

Jacaranda mimosifolia 14 0.001 ***

Lantana camara 45 0.992

Melia azedarach 109 0.999

Opuntia spp. 173 0.912

Pinus spp. 307 0.933

Populus spp. 154 0.967

Prosopis spp. 18 0.001 ***

Psidium gaujava 26 0.000 ***

Rosa rubignosa 7 0.000 ***

Salix babylonica 139 0.987

Senna didymobotrya 51 0.456

Sesbania punicea 4 0.001 ***

Solanum mauritianum 97 0.998

Tamarix chinensis 10 0.001 ***
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to underestimation of the current and potential distri-

bution of IAPS that are underrepresented in the

landscape layer. Third, the NIAPS may have under-

estimated or overestimated the current distribution of

those species that are not very conspicuous or

underrepresented for other reasons (e.g., taxonomic

identification difficulties). Fourth, averaging the val-

ues of the explanatory variables for each QCs is based

on the assumption that the mean values represent the

point of occurrence of the IAPS. The likelihood of this

assumption being erroneous depends on the level of

variability of the explanatory variables in the QCs, and

will be higher in complex topographic areas (Le

Maitre et al. 2004). Fifth, the modeled invasion could

have been underestimated due to the fact that after the

Gini impurity measure, we excluded 13 response

variables from our SDM, which did not result in

having statistically significant results.

However, this study is intended to provide guidance

for decision-makers, and none of the factors men-

tioned above significantly affect the overall accuracy

or usefulness of our results.

Invasion determinants

Our study showed that the addition of the human-

related variables to the environmental set of variables

did not result in statistically significant improvements

Table 6 For each biome, we reported the number of QCs

within the biome, the number of QCs currently and potentially

invaded, the percentage area suitable for invasion, the invasion

increase, the percentage of new QCs invadable compared to the

total, and the number of IAPS for which the biome is

suitable for invasion

Biomes Total

QCs

Currently

invaded QCs

Potentially

invaded QCs

Area suitable for

invasion (%)

Invasion

increase (%)

New QCs

(%)

No. of

IAPS

Albany thicket 110 83 102 92.7 22.9 17.3 10

Desert 9 0 0 0.0 0.0 0.0 0

Fynbos 236 150 200 84.7 33.3 21.2 9

Grasslands 601 428 517 86.0 20.8 14.8 13

Indian Ocean

Coastal belt

50 46 50 100.0 8.7 8.0 10

Nama-Karoo 219 10 16 7.3 60.0 2.7 2

Savanna 489 294 393 80.4 33.7 20.2 14

Succulent Karoo 126 4 21 16.7 425.0 13.5 4

Table 7 For each province we reported the number of QCs

within the province, the number of QCs currently and

potentially invaded, the percentage area suitable for invasion,

the invasion increase, the percentage of new QCs invadable

compared to the total, and the number of IAPS for which the

province is suitable for invasion

Provinces Total

QCs

Currently

invaded QCs

Potentially

invaded QCs

Area suitable for

invasion (%)

Invasion

increase (%)

New QCs

(%)

No. of

IAPS

Western

cape

310 138 192 61.9 39.1 17.4 8

Northern

cape

203 4 11 5.4 175.0 3.4 2

Eastern cape 411 277 337 82.0 21.7 14.6 13

Free State 161 68 83 51.5 22.1 9.3 8

Northwest 75 36 51 68.0 41.7 20.0 9

KwaZulu-

Natal

263 223 263 100.0 17.9 15.2 13

Gauteng 32 30 32 100.0 6.7 6.2 10

Mpumalanga 208 159 197 94.7 23.9 18.3 13

Limpopo 177 83 133 75.1 60.2 28.2 13

Plant Ecol

123



in the accuracy of SDM for 24 out of the 27 IAPS

(Table 3). Improvements were obtained only for

Caesalpinia decapetala and Senna didymobotrya,

which are located in highly urbanized and degraded

areas. The reason that the difference between the two

GLMs was not significant could be related to the

extension of the study area and the rather coarse scale

of the study. This scale could undermine the effect of

some human-related variables that require higher

resolution to be influential.

Moreover, it was found that for only 14 out of the 27

IAPS considered, the variables were statistically

significant in explaining the potential distributions

(Table 4, Fig. 1). Consequently, we excluded the

other 13 IAPS from subsequent analysis, which were

found to be those with the least number of QC

currently invaded (generally less than 50).

We observed some general trends when analyzing

the results obtained from the two-part model and the

RF model. The importance values obtained from the

RF model showed that at this scale of analysis climatic

variables are overall more important than land use, soil

and anthropogenic variables in predicting the potential

distribution of the IAPS, in line with Ohlemuller et al.

(2006)’s findings (Table 10 in Appendix).

The two-part model analysis confirmed the impor-

tance of the climatic variables, as they proved to be

influential for many of the IAPS. The logistic part of

the model also highlighted some influence of the soil

variables (Fig. 2, Table 8 in Appendix). We observed

general trends of both positive and negative

correlations. The fact that the growing period and

the mean autumn precipitation had an influence on the

presence of plant species was in line with Rouget et al.

(2004) and Coudun et al. (2006). We analyzed the

maps of the soil types and noticed that the distribution

of some soil variables matched the potential distribu-

tion patterns of the IAPS. For example, the plinthic

horizon soils are usually associated with humid and

subhumid warm climates with a distinct dry season

(Fey 2010); such climatic conditions are characteristic

of the Grasslands (Rutherford and Westfall 1986)

where Eucalptus spp., Populus spp. and Salix baby-

lonica are major invaders (Henderson 1999; Van

Wilgen 2009). The logistic part outputs also showed a

negative correlation between the presence of most of

the IAPS and the following climatic variables (Table 8

in Appendix): mean maximum temperature of hottest

month, mean minimum temperature of coldest month

(as in Rouget et al. 2002, 2004), frost period, and

winter and summer precipitation (as in Randin et al.

2009).

In the regression part of the model (Table 9 in

Appendix), which analyzed the influence of the

environmental variables on species abundance, the

fact that the growing days and the frost period had an

influence on the abundance of IAPS was in line with

Rouget et al. (2004), whereas the influence of the

summer precipitation was in line with Pearman et al.

(2008) and Randin et al. (2009). The influence of the

mean annual temperature on IAPS was already

demonstrated in many studies (e.g., Leathwick 1998;

Fig. 2 Maps of South Africa showing the currently invaded

QCs (left) and potentially invaded QCs (right) with the related

number of IAPS currently/potentially found in each QCs.

Provinces: WC Western Cape, EC Eastern Cape, NC Northern

Cape, NW North West, FS Free State, KZN KwaZulu-Natal, GP

Gauteng, MP Mpumalanga, LI Limpopo. (Color figure online)
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Pearman et al. 2008; Rickebusch et al. 2008; Randin

et al. 2009).

Aside from the climatic variables, this study seems

to confirm that the invasion process is highly species-

specific as well as spatially and temporally specific

(Mack 1996; Wilson et al. 2007; Theoharides and

Dukes 2007). As a result, the spread of the IAPS can be

explained only through a combination of environmen-

tal factors, species characteristics and anthropic use

for each species. Nonetheless, we are confident that by

including land cover and soil variables in our models,

the predictions are more accurate than by only

including climatic variables (Ibáñez et al. 2009; Gassó

et al. 2012). Moreover, progress in using SDMs will

only be made by increasing the understanding of the

ecological drivers of IAPS’ distributions, and the

extent of their relationship with determinant variables

(Hijmans and Graham 2006). Failure to incorporate an

influential predictor decreases model performance and

outcome relevance (Austin and Van Niel 2011). Hence

great attention should be given to the relative weight,

causality, and estimation of each SDM predictor

(Araújo and Guisan 2006).

Potential distribution

Once we selected the variables and the species for

which the model provided statistically significant

predictions, we analyzed the differences between the

current and potential distributions, in order to assess

the overall invasion risk for each species and the

invasion susceptibility of the QCs. The potentially

invaded QCs predicted by the model for the 14 IAPS

considered, amounted to 1299 QCs out of the 1840

QCs, i.e., 568089.8 Km2 (46, 5% of South Africa).

Compared to the 1018 QCs currently invaded by our

IAPS, the model predicted that 181 new QCs have the

potential to be invaded, corresponding to 120972.0

Km2, which would represent a 21.3% increase of the

current invasion (Fig. 1). The 172 new QCs are in the

proximity of the currently invaded QCs: along the

western and eastern coasts, and across the northern

plains. The QCs that appeared to be suitable to a higher

number of IAPS were located along the eastern coast

of KwaZulu-Natal and the plains, grasslands and

savanna of Limpopo, Gauteng, and Mpumalanga

(Fig. 2).

The invasion process resulted highly dependent on

the biome types. The results showed that the Desert

had not been and was not predicted to be invaded; the

Nama-Karoo and the Succulent Karoo have, respec-

tively, only 2.7 and 13.5% of their QCs potentially to

be invaded (Table 6). Conversely, the other biomes

(Albany Thicket, Fynbos, Grasslands, Savanna, and

the Indian Ocean Coastal Belt) were found to be

suitable for invasion from IAPS with over 80% of their

area suitable for invasion. This result may be

explained considering the higher level of human

disturbance, propagule pressure and nutrients that

differentiates these biomes from those of the arid and

hyperarid zones.

From a catchment and water stress perspective, the

suitability of the Grasslands to invasion, particularly

by a high number of woody IAPS including riparian

Salix babylonica and Populus spp., is of great concern

(Table 7). In fact, in this area, catchments have

generally high water yields and these invaders can

significantly reduce catchment runoff and cause great

water scarcity (Le Maitre et al. 2000; Rouget et al.

2004).

Richardson and Rejmánek (2011) have shown that

the Savanna is one of the biomes that most recently

experienced a high increase in plant invasion due to

propagule pressure from other savannas outside South

Africa. Earlier literature indicated that in South

African savanna plant invasion was not considered

as a major issue (Parsons, 1972), however, subsequent

studies highlighted the increased invasion in humid

and riparian areas of this biome (Henderson and Wells

1986; Turpie 2004). The major invaders in the

Savanna biome were found to be Cereus jamacaru,

Melia azederach and species of Eucalyptus, Acacia,

and Agave.

The model showed the suitability of South African

provinces to invasion. The Northern Cape was the only

province that had a very low suitability for IAPS; 5.4%

of its areas could potentially be invaded (Table 7). In

fact, the Northern Cape is mostly occupied by biomes

with a very low suitability: Desert, Succulent- and

Nama-Karoo. The lack of potential IAPS in the

mountain areas of the Western Cape depends mainly

form the fact that the Fynbos is invaded by alien

species, fire dependent and well specialized to survive

nutrient-poor soils (Richardson et al. 1997) that were

excluded from the modeling due to the low number of

sample points in the NIAPS. The other provinces were

found to be highly suitable for IAPS invasion: 50 (Free

state province) to 100% (Gauteng province) of the
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total province area could potentially be suit-

able (Table 7, Fig. 2).

The KwaZulu-Natal was suitable to all the 14 IAPS

considered, except Acacia cyclops. The area that could

potentially be completely invaded amounts, and

according to the low invasion increase value

(17.9%), it seems that the future invasion will be

related to an increase in the abundance of currently

present IAPS, rather than to an increase in the number

of invaded QCs. In this case, control actions should

focus on eradicating the most affected areas rather

than preventing further spread in other QCs. The

Gauteng province resulted as the most threatened by

our IAPS, in line with the fact that two of the most

suitable biomes are found within it, namely, Grass-

lands and Savanna, and that it is characterized by large

urban areas, such as Johannesburg. The invasion

increase value is also very low (6.7%) since the current

IAPS distribution is already consistent (Table 7).

Table 5 shows the difference between the invasion

increase percentages among the IAPS considered.

Some species had a rather limited current and potential

invasion area, e.g., Acacia cyclops and Senna didy-

mobotrya. These species tend to occupy specific and

often very limited biomes, such as the Fynbos in the

case of Acacia cyclops, and the Indian Ocean coastline

in the case of Senna didymobotrya. Other species are

characterized by a wider potential distribution: species

of the genera Acacia, Eucalyptus, and Pinus are able to

potentially invade several biomes, namely Savanna

and Grasslands. Moreover, these last species are

characterized by the highest relative occupancy

Eucalyptus, Pinus, and Acacia, with more than 80%

of the suitable area occupied, and thus appear to have

nearly reached the full extent of their potential

distribution range. Other species seem to be still in

the full expansion phase, e.g., Lantana camara has an

invasion increase of 432.2%, and Melia azederach of

229.6%. This difference in invasion dynamics is due to

the following factors: climate, characteristics of the

species, characteristics of the invaded biome, and

anthropic plant use. In South Africa, the largest

biomes are Savanna, Grasslands, and the Karoos,

therefore, the species more suited to invading these

biomes will have a greater chance to invade a broader

area, compared to species adapted to other biomes

(Wilson et al. 2007). Moreover, Maestre and Cortina

(2004) showed that arid environments are more likely

to be less competitive than humid environments that,

being more open and exposed, are more susceptible to

invasion.

Residence time is often identified as having a

positive correlation with the extent of occurrence of

IAPS, i.e., species introduced earlier, on average

occupy a higher proportion of their potential distribu-

tion range (Rejmánek 2000; Castro et al. 2005; Gassó

et al. 2012). However, in South Africa, Thuiller et al.

(2006) showed that minimum residence time did not

explain the distribution patterns of invaders, even after

removing the confounding effect of the environment,

and that minimum residence time is a limited value

when considering distribution patterns at regional

scale after a century of residence. Similarly, in this

study, no significant relationship was observed, as

species introduced earlier (e.g., Salix babylonica,

RO = 52.4%, RT = 337 years) showed a relative

occupancy that was comparable to that of other species

introduced more recently (e.g., Chromolaena odorata,

RO = 49.6%, RT = 158 years). Some species intro-

duced a long time ago had still a restricted distribution

with respect to their modeled potential distribution

range. Species introduced more recently (Eucalyptus

spp.) had a much higher relative occupancy

(RO = 74.1%) compared to species introduced only

few years earlier (Lanatana camara with a

RO = 13%). The link between relative occupancy

and minimum residence time could be weak for

species introduced many centuries ago (Salix baby-

lonica,Pinus pinaster andOpuntia ficus-indica) due to

the high uncertainty related to old first records (Gassó

et al. 2012). Furthermore, as mentioned, SDMs are

based on the assumption that organisms are at

equilibrium with their environment, however, this

might not be the case for recently introduced species

(Opuntia stricta and Cereus jamacaru introduced less

than a century ago) which could undermine predic-

tions (Gassó et al. 2012; Thuiller et al. 2006).

Conclusions

IAPS pose a significant threat to biodiversity and

functioning of the ecosystems, and billions of dollars

are spent to control them (de Lange and van Wilgen

2010). The most cost-effective approach is prevention

(McConnachie et al. 2012). Hence, the success of

biological invasion management depends on the

ability to predict the potential distribution of IAPS
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and identify the invasion determinants (Sharma et al.

2005). Van Wilgen et al. (2012) suggested that South

African plant control programs should prioritize both

the species and the areas: IAPS control operations

begin by identifying the priority species and catch-

ments, and then consulting with the decision-makers

and key stakeholders (Balmford 2003). SDMs are

powerful tools that can be used to plan IAPS

management programs through: (i) the classification

of invaded areas for differentiated management

actions, (ii) the support of control initiatives for

preventing IAPS’ spread, (iii) the information of funds

reallocation away from controlling IAPS in areas

where suitability is expected to decrease in the future,

and (iv) the identification of opportunities for rela-

tively inexpensive invasion prevention (Kriticos et al.

2011).

In this paper, we modeled the distribution of IAPS

using as sampling units the quaternary catchments that

are also the basic hydrological unit for water manage-

ment. This approach provides us with both scientific

insights on IAPS spread processes as well as some

indications for decision-making to plan control oper-

ations, for which efficiency and prioritization are

fundamental (Rouget et al. 2004). At the national

scale, we confirmed the prevailing importance of

climatic variables with respect to land cover and

anthropogenic factors. Moreover, we found out that

overall the newly potentially invaded QCs are much

less than the currently invaded ones, therefore control

operations should focus on managing the density of

priority IAPS within their current range (see Van

Wilgen et al. 2007), rather than preventing the

expansion of the distribution (Rouget et al. 2004).

This type of approach should necessarily be accom-

panied with finer scale analysis to identify local

components of the problem so that the control

operations can be structured as efficiently as possible.
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tion range of invasive plant species in Spain. NeoBiota

12:25–40

Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An

active-fire based burned area mapping algorithm for the

MODIS sensor. Remote Sens Environ 113:408–420

Guisan A, Thuiller W (2005) Predicting species distribution:

offering more than simple habitat models. Ecol Lett

8(9):993–1009

Henderson L (1999) The Southern African Plant Invaders Atlas

(SAPIA) and its contribution to biological weed control.

Afr Entomol Memoir 1:159–163

Henderson L, Wells MJ (1986) Alien plant invasions in the

grassland and savanna biomes. In: Macdonald IAW, Kru-

ger FJ, Ferrar AA (eds) The ecology and management of

biological invasions in Southern Africa. Oxford University

Press, Cape Town, pp 109–117

Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh

MG, Shepherd KD, Sila A, MacMillan RA, Mendes de

Jesus J, Tamene L, Tondoh JE (2015) Mapping soil prop-

erties of Africa at 250 m resolution: random forests sig-

nificantly improve current predictions. PLoS ONE

10:e0125814

Higgins SI, Richardson DM (1996) A review of models of alien

plant spread. Ecol Model 87:249–265

Higgins SI, Richardson DM, Cowling RM (2000) Using a

dynamic landscape model for planning the management of

alien plant invasions. Ecol Appl 10(6):1833–1848

Hijmans RJ, Graham CH (2006) The ability of climate envelope

models to predict the effect of climate change on species

distributions. Glob Change Biol 12(12):2272–2281

Hobbs RJ (2004) The Working for water programme in South

Africa: the science behind the success. Divers Distrib

10(5–6):501–503
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Pino J, Font X, Carbó J, Jové M, Pallarès L (2005) Large-scale

correlates of alien plant invasion in Catalonia (NE of

Spain). Biol Conserv 122(2):339–350

R Core Team (2014). R: a language and environment for sta-

tistical computing. R Foundation for Statistical Comput-

ing, Vienna, Austria. http://www.R-project.org/

Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE,

Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Cli-

mate change and plant distribution: local models predict

high-elevation persistence. Glob Change Biol

15(6):1557–1569
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